托尔专用化学品(镇江)有限公司 土壤和地下水自行监测报告 (2025年度)

托尔专用化学品(镇江)有限公司 2025年11月

目录

1工作背景	1
1.1 工作由来	1
1.2 工作依据	1
1.3 工作内容及技术路线	2
2 企业概况	
2.1 企业名称、地址、坐标等	5
2.2 企业用地历史、行业分类、经营范围等	6
2.3 企业用地已有的环境调查与监测信息	
3 地勘资料	11
3.1 地质信息	11
3.2 水文信息	12
4 企业生产及污染防治情况	13
4.1 企业生产概况	13
4.2 企业总平面布置	
4.3 各重点场所、重点设施设备情况	
5 重点监测单元识别与分类	
5.1 重点单元情况	
5.2 识别/分类结果及原因	
5.3 关注污染物	46
6 监测点位布设方案	
6.1 重点单元及相应监测点/监测井的布设位置	
6.2 各点位布设原因	
6.3 各点位监测指标及选取原因	51
6.4 分析测试方法	53
6.5 评价方法	
6.6 监测频次	
7样品采集、保存、流转与制备	
7.1 现场采样位置、数量和深度	60
7.2 采样方法及程序	60
7.3 分析测试	
7.4 监测设施维护	69
8 质量保证与质量控制	
8.1 现场质量控制	
8.2 实验室质量控制	
8.3 原始记录和监测报告的审核	
8.4 安全防护和应急处置计划	
9 检测结果分析	
9.1 土壤检测结果分析	
9.2 地下水检测结果分析	
10 结论与建议	84
10.1 结论	84

托尔专用化学品(镇江)有限公司土壤和地下水自行监测报告(2025年度)

10.2 建议	84
附件	
附件1重点监测单元清单	
附件2实验室样品检测	88
附件 3 现场采样记录	

1工作背景

1.1 工作由来

为贯彻《中华人民共和国土壤污染防治法》、《工矿用地土壤环境管理办法(试行)》(生态环境部令第3号)、《关于加强土壤污染重点监管单位土壤环境管理工作的通知》(通环土[2020]7号)有关要求,落实企业污染防治主体责任,规范和指导重点监管企业开展土壤和地下水环境自行监测。托尔专用化学品(镇江)有限公司组建了由专业人员组成的专项工作组,进行了资料收集、人员访谈和现场踏勘,在详细了解企业基本情况和充分分析相关资料的基础上,编制了《托尔专用化学品(镇江)有限公司土壤和地下水自行监测方案》,参照此方案完成企业土壤和地下水自行监测编制年度监测报告并依法向社会公开监测信息,为其开展后续工作提供依据。

根据此方案,镇江新区环境监测站有限公司分别于2025年3月、5月和9月对 联成化学所在地块的土壤和地下水进行监测,并根据监测结果编制形成本报 告。

1.2 工作依据

1.2.1 国家相关法律法规和政策

- (1) 《中华人民共和国环境保护法》(2015年1月1日);
- (2) 《中华人民共和国土壤污染防治法》(2019年1月1日)
- (3) 《中华人民共和国土地管理法》(2004年8月28日);
- (4) 《中华人民共和国固体废物污染环境防治法》(2020年9月1日起施行);
- (5) 《土壤环境保护和污染治理行动计划》(2016年5月28日):
- (6) 《土壤污染防治行动计划》(国发〔2016〕31号);
- (7) 《关于加强土壤污染防治工作的意见》(环发[2008]48号);
- (8) 《江苏省政府关于印发江苏省土壤污染防治工作方案的通知》(苏政发〔2016〕169号);
- (9) 工矿用地土壤环境管理办法(试行)(生态环境部令第3号):
- (10) 《江苏省土壤污染防治条例》(2022)。

1.2.2 相关导则和规范

- (1) 《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021);
- (2) 《环境影响评价技术导则-土壤环境(试行)》(HJ964-2018);
- (3) 《建设用地土壤污染状况调查技术导则》(HJ25.1-2019);
- (4) 《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019);
- (5) 《建设用地土壤污染风险评估技术导则》(HJ25.3-2019);
- (6) 《建设用地土壤污染风险管控和修复术语》(HJ682-2019);
- (7) 《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018);
- (8) 《土壤环境质量-农用地土壤污染风险管控标准》(GB15618-2018);
- (9) 《地下水质量标准》(GB/T14848-2017);
- (10) 《土壤环境监测技术规范》(HJ/T166-2004);
- (11) 《地下水环境监测技术规范》(HJ164-2020);
- (12) 《建筑工程地质勘探与取样技术规程》(JGJ/T87-2012);
- (13)《重点行业企业用地调查疑似污染地块布点技术规定》;
- (14)《重点行业企业用地调查样品采集保存和流转技术规定》;
- (15) 《关于进一步明确重点行业企业用地调查相关要求的通知》;
- (16) 《排污单位自行监测技术指南总则》(HJ819-2018)。

1.3 工作内容及技术路线

1.3.1 调查方法

在企业土壤和自行监测过程中,严格执行我国现有的污染场地管理法律法规。遵照《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)、《建设用地土壤污染状况调查技术导则》(HJ25.1-2019)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)等要求开展自行监测工作,将以《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)、《地下水质量标准》(GB/T14848-2017)等相关标准为评价依据,组织实施本次土壤和地下水自行监测工作。

调查方法: 在资料收集、现场探勘和人员访谈的基础上, 合理布设调查点位

对场地进行环境调查取样分析,判断场地是否受到污染、污染类型及程度,为企业下一步决策提供依据。

1.3.2 工作内容及技术路线

此次托尔专用化学品(镇江)有限公司土壤和地下水自行监测工作主要包括 资料收集、现场踏勘、人员访谈、污染源识别和污染分析、点位布设和检测项目确 定、现场采样检测分析、自行监测报告编制七个方面,具体内容如下:

(1) 资料收集

收集托尔专用化学品(镇江)有限公司基本信息,核实地块内环境与污染信息,优先保证基本资料齐全,尽量收集辅助资料。对于缺失的资料,通过信息检索、部门走访、电话咨询、现场走访等方式进行收集。

(2) 现场踏勘

现场踏勘的目的一是完善信息收集工作,二是通过对场地及其周边环境设施进行现场调查,观察场地污染痕迹,核实资料收集的准确性,获取与地块污染有关的线索。调查组采用专业调查表格、GPS定位仪、摄/录像设备等手段,仔细观察、辨别、记录地块重要环境状况及其疑似污染痕迹,识别和判断托尔专用化学品(镇江)有限公司地块污染状况。

(3) 人员访谈

对托尔专用化学品(镇江)有限公司用地知情人员采取咨询、发放调查表等形式进行访谈,访谈人员包括场地管理机构、场地的使用者等。

(4) 污染源识别和污染分析

调查组对资料收集、现场踏勘和人员访谈获取的相关资料信息进行汇总、整理和分析,了解托尔专用化学品(镇江)有限公司历史变革、原辅材料及产品、生产工艺生产设施布局等对本地块影响,重点关注污染物排放点及污染防治设施区域,包括生产废水排放点、废水收集和处理系统、固体废物堆放区域等,对企业产污环节进行分析,识别场地污染源。

(5) 点位布设和检测项目确定

调查组根据企业用地污染源识别分析后,确定土壤和地下水采样点位及检测项目。

(6) 现场采样检测分析

调查组制定布点采样方案,根据方案准备采样设备、仪器和材料等,对土

壤和地下水采样点进行测量放线布点,选取合适的钻探设备进行土壤钻孔取样和地下水监测井监测,采集土壤和地下水样品,做好相关拍摄和文件记录工作。对采集的环境样品进行实验室检测。

(7) 自行监测报告编制

了解企业的基本情况,识别出相应的污染源,分析企业在历史生产过程中可能产生的土壤和地下水污染情况,评估实验室检测数据,分析检测数据,编制企业土壤和地下水自行监测报告,为企业提供依据。

本次土壤和地下水自行监测的工作程序见图1-1。

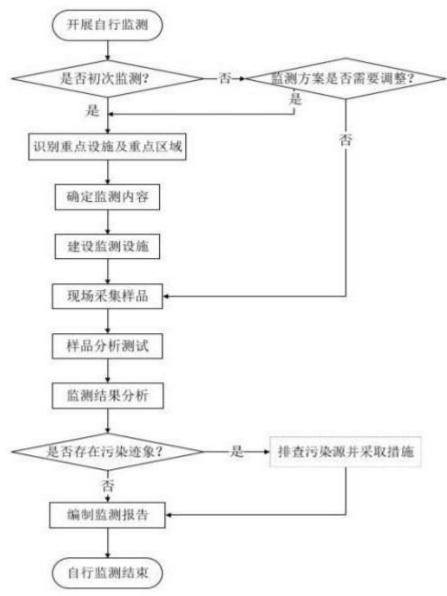


图 1-1 土壤和地下水自行监测的工作程序

2 企业概况

2.1 企业名称、地址、坐标等

THOR集团是世界著名的特殊化学品供应商,创立于1959年,总部位于英国马加特市。托尔专用化学品(镇江)有限公司成立于2012年,总投资3900万美元,专业从事各类杀菌剂、阻燃剂、季铵盐类复合物的研究、开发、生产和销售。

托尔专用化学品(镇江)有限公司年产22000吨杀菌剂技改项目于2020年11月23日获得镇江新区行政审批局批复(镇新审批环审[2020]138号),11月底开工建设;建设过程中因原材料之一己硫醇断供,企业采用氯丁烷+硫化钠技术路线替换己硫醇+硫氢化钠路线。由于该项目生产工艺、原料及污染物排放等发生变动,根据江苏省环境保护厅文件《关于加强建设项目重大变动环评管理的通知》(苏环办[2015]256号),重新报批该项目环境影响评价文件,并于2022年12月5日获得镇江新区行政审批局批复(镇新审批环审[2022]91号)。

该重新报批项目于2023年3月建成调试;2023年5月重新申请了排污许可证 (排污许可证编号:91321191055231615T001V)。该重新报批项目于2024年1 月完成了竣工环保自主验收。

企业基本信息见表2-1。

表 2-1 企业基本信息

单位名称	托尔专用化学品(镇江)有限公司		
组织机构代码	91321191055231615T		
法定代表人	郑清林		
单位所在地	镇江新区新材料产业园金港大道 182 号		
中心纬度	32.159202°		
中心经度	119.606514°		
所属行业类别	C2662 专用化学品制造		
投产年月	2015年		
主要原辅料	硫化钠、氢氧化钠、氯苯、盐酸、邻氯苯腈、甲醛等		
主要产品	杀菌剂、新型防腐剂等		
员工人数及工作制 度	年工作 330 天,年生产时间 7920 小时		
历史事故	无		

2.2 企业用地历史、行业分类、经营范围等

托尔专用化学品(镇江)有限公司成立于2012年,位于江苏省镇江新区新材料产业园金港大道182号,该地块用地性质为工业用地,符合园区总体土地利用规划要求。该地块根据相关人员访谈并结合卫星地图可知,该区域2012年之后一直为托尔专用化学品(镇江)有限公司生产用地,在此之前该地块为空地。企业历史用地情况见表2-3,历史卫星影像见图2-1。

			<u> </u>	1 114 7 0 7 9 -	
•	起始时间	结束时间	厂区名称	生产内容	备注
	/	2012	空地	/	/
	2012	至今	托尔专用化学品 (镇江)有限公 司	专项化学品制造	/

表 2-3 企业用地历史沿革情况表

2009年12月(历史最早影像时间)

2013年12月

2015年4月

2017年4月

2018年10月

图 2-1 托尔专用化学品(镇江)有限公司历史卫星影像图

2.3 企业用地已有的环境调查与监测信息

- (1) 托尔专用化学品(镇江)有限公司在环评报告书编制阶段进行了土壤和地下水检测,土壤监测共布设6个点,检测因子为45项+甲醛+氯苯类+石油烃(C10-C40)。根据土壤监测结果可知,土壤环境质量各因子均低于筛选值,对人体健康的风险可以忽略,土壤环境质量良好。地下水监测共布设6个点。监测结果表明,区域各地下水监测点位的pH值、亚硝酸盐、挥发酚、氰化物、氟化物、六价铬、砷、汞、铅、镉、锰、锌、铝等监测指标均满足《地下水环境质量标准》(GB/T14848-2017)I类标准要求;各监测点位的总硬度、溶解性固体、氯化物、苯、甲苯、二甲苯、氯苯等监测指标满足GB/T14848-2017中II类以上标准要求;各监测点位的菌落总数达GB/T14848-2017中IV类标准以上要求,总大肠荫群达GB/T14848-2017中V类标准要求。
- (2) 托尔专用化学品(镇江)有限公司于2023年7月委托南京联凯环境检测技术有限公司进行土壤和地下水检测,根据检测报告,共布设6个土壤点位,

检测结果符合《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值进行评价。地块内布设1个地下水点位,检测结果符合地下水质量标准》(GB/T14848-2017)中IV类水限值。

3地勘资料

3.1 地质信息

根据《托尔专用化学品(镇江)有限公司生产工业杀菌剂、织物阻燃剂及季铵盐类化合物生产建设项目岩土工程勘察报告》(2012.8)该勘察报告地层信息如下所述:

据本次勘察可知,在勘探孔揭露深度范围内,按地层成因、时代及各岩土层物理力学性质等该场地内岩土层分为8层及3个亚层,兹自上而下分述如下:

- ①素填土:杂色,松散,以粉质黏土为主,含有大量植物根茎,堆积时间1年左右,该层土质不均匀,场地南侧底板附件局部夹有大量建筑垃圾,厚度0.70~8.90m。
- ②粉质粘土: 黄褐色、灰褐色,可塑,局部软塑,干强度中等,中等压缩性,中等韧性,无摇震反应,稍有光泽,坳沟分布稳定,阶地部位缺失,土质尚均勾;顶板标高4.10~12.09m,层厚0.70~8.00m。
- ③淤泥质粉质粘土:灰褐色,流塑,干强度中等,高压缩性,中等韧性, 无摇震反应,稍有光泽,分布稳定,土质不均匀,局部夹少量粉土,灵敏度属 中等;顶板标高1.90~10.39m,层厚0.60~13.70m。
- ③-1粉质粘土:灰褐色、灰色,可塑偏软,干强度中等,中等压缩性,中等韧性,无摇震反应,稍有光泽,分布不稳定,仅局部分布,土质不均勾,局部夹少量粉土;顶板标高-6.51~9.79m,层厚1.00~6.00m。
- ③-2粉质粘土:灰褐色、灰色,软塑,局部流塑,干强度中等,中等压缩性,中等韧性,无摇震反应,稍有光泽,分布不稳定,仅局部分布,土质不均勾,含有机质,夹薄层粉土;顶板标高-5.59~6.17m,层厚1.50~9.00m。
- ③-3粉土:灰褐色、灰蓝色,湿,中密,干强度低,中等压缩性,低韧性,摇震反应迅速,无光泽,分布不稳定,仅局部分布,土质不均勾,粘粒含量较高;顶板标高-8.52~-7.09m,层厚2.10~3.60m。
- ④粉质粘土: 黄褐色, 硬塑, 局部可塑, 干强度中等, 中等压缩性, 中等 韧性, 摇震反应无, 稍有光泽, 阶地部位分布稳定, 土质均匀, 含有大量铁锰质结核: 顶板标高5.95~14.46m, 层厚1.30~11.70m。
 - ⑤粉质粘土: 黄褐色, 可塑, 干强度中等, 中等压缩性, 中等韧性, 摇震

反应无,稍有光泽,总体分布稳定,土质不均匀,局部夹粉土;顶板标高-8.86~9.90m,层厚2.30~15.70m。

- ⑤-1粉土: 黄褐色,湿,中密~密实,以密实为主,干强度低,中等压缩性,低韧性,摇震反应迅速,无光泽,分布不稳定,主要以透镜体形式分布于⑤粉质粘土中,土质不均匀,粘粒含量较高;顶板标高-2.54~9.80m,层厚1.00~9.00m。
- ⑥粉质粘土: 黄褐色, 硬塑, 干强度中等, 中等压缩性, 中等韧性, 摇震反应无, 稍有光泽, 分布稳定, 土质均匀, 含有大量铁锰质结核; 顶板标高-12.96~-8.20m, 层厚0.10~5.30m。
- ⑦强风化泥岩: 黄褐色,灰黄色,密实,遇水易软化,手掰易碎,该层大部分已风化土状,局部夹未分化泥岩岩块,呈土夹石状,分布稳定,裂隙发育,按岩石坚硬程度分类属极软岩,按岩体完整度属极破碎,按岩体基本质量等级分类属V级;顶板标高-12.96~-8.20m,层厚0.10~5.30m。
- ⑧中风化泥岩: 黄褐色,灰黄色,取芯呈柱状,取芯长约10~20cm,锤击易碎,按岩石坚硬程度分类属极软岩,按岩体完整程度属较破碎,按岩体基本质量等级分类属V级;该层仅在72#孔揭露,顶板标高-16.50m,控制厚度0.50m。

3.2 水文信息

据本次勘察资料可知,拟建场地内地下水类型为潜水,主要赋存于第①、②、③、③-1、③-2、③-3、⑤-1层土中,①~⑥均为弱透水层,第⑦、⑧层基岩中没有发现裂隙水分布。拟建场地内地下水主要接受大气降水和侧向径流的补给,排泄形式以蒸发和侧向径流为主。

勘察期间,未测得初见水位标高,稳定地下水位埋深在0.90~1.60m之间, 黄海标高在8.52~12.48m之间,地下水位受季节性变化明显,据调查该区地下水 埋深年变化幅度在3~5m左右,近3~5年内最高水位标高至室外地面,雨季时低 洼处地下水位较高,地表有积水现象。

4 企业生产及污染防治情况

4.1 企业生产概况

4.1.1 主要生产产品

托尔专用化学品(镇江)有限公司主要项目产品规模见表4-1。

表 4-1 项目产品规模一览表

序号	产品名称	生产能力(t/a)	年运行时数
1	杀菌剂型号1	23000	7920
2	杀菌剂型号 2	6700	7920
3	个人护理杀菌剂	3000	7920
4	新型防腐剂	2000	7920
5	AFLAMMITKWB	1400	7920
6	FLAMMENTINFMB	400	7920
7	FLAMMENTINMSG	380	7920
8	AFLAMMITSAP	400	7920
9	BAC 系列	7700	7920
10	QUATBHQ 系列	6500	7920
11	QUATCTC 系列	5000	7920
12	DDQ 系列	1600	7920
13	QUATSBQ 系列	650	7920

4.1.2 原辅材料

托尔专用化学品(镇江)有限公司主要原料见表4-2。

表 4-2 主要原辅料一览表

生产线	原料名称	年用量 (t/a)	来源
	硫化钠	3408	外购
	氢氧化钠	868	外购
	催化剂	297	外购
新型防腐剂	氯苯	278	外购
生产线	盐酸	800	首批生产外购,其余 回用
	邻氯苯腈 (CBN)	2240	外购
	氯丁烷	458	外购

	氯气	1160	外购, 液氯槽车
	盐水	2000	自制
	ActicideMV14	1520.5	外购
	2-甲基-3(2H)-异噻唑啉酮	421.2	外购
	1,2-苯并异噻唑啉-3-酮	136.9	外购
	溴硝醇	21.1	外购
杀菌剂型号 1	多聚甲醛	31.6	外购
生产线(不	2,2-二溴-3-氰基丙酰胺	31.6	外购
含个人护理	硝酸铜	15.8	外购
用品)	甲醛溶液	158.0	外购
	溴酸钠	10.5	外购
	硝酸钠	52.7	外购
	氢氧化钠	84.2	外购
	盐酸	52.7	外购
	ActicideMV14	356.7	外购
	2-甲基-3(2H)-异噻唑啉酮	98.8	外购
	1,2-苯并异噻唑啉-3-酮	32.1	外购
	溴硝醇	4.9	外购
杀菌剂型号 1	多聚甲醛	7.4	外购
生产线 (个	2,2-二溴-3-氰基丙酰胺	7.4	外购
人护理用	硝酸铜	3.7	外购
品)	甲醛溶液	37.1	外购
	溴酸钠	2.5	外购
	硝酸钠	12.4	外购
	氢氧化钠	19.8	外购
	盐酸	12.4	外购
	N-辛基异噻唑啉酮	388.9	外购
	防霉抗藻剂	25.9	外购
太 古刘刑 巳 o	敌草隆	1335.2	外购
杀菌剂型号 2 生产线	多菌灵	601.5	外购
工) 汉	二乙二醇	207.4	外购
	马来酸	5.2	外购
	陶土	674.1	外购

	丙烯酰胺	365	外购
	亚磷酸二甲酯	592	外购
	甲醇	423	外购
	甲醇钠	80	外购
	甲醛	368	外购
	氢氧化钠	45	外购
	磷酸	9	外购
织物阻燃树 一 脂生产线 —	碳酸胍	65	外购
加工) 发	尿素	117	外购
	甲基磷酸	55	外购
	甲基磷酸二甲酯	127	外购
	双氰胺	80	外购
	四羟甲基氯化磷	308	外购
	三乙醇胺	5	外购
	反渗透水	480	自制
	氯化苄	2472	外购
	碳十二烷胺	3850	外购
	碳十四烷胺	640	外购
	碳十六烷胺	1250	外购
	碳二十二烷胺	455	外购
- W 11 W 11	碳十八烷胺	390	外购
季铵盐类化 一合物生产线 —	氯甲烷	435	外购
	乙醇	770	外购
	异丙醇	478	外购
	丙三醇	97	外购
	盐酸	20	外购
	氢氧化钠	20	外购
	反渗透水	4728	自制

本项目原辅材料理化性质见表4-3。

表 4-3 原辅料理化性质一览表

名称(分子式)	理化性质	毒性	燃爆性
ActicideMV14	由 5-氯-2-甲基-4-异噻唑啉-3-酮与 2-甲基-4-异噻唑啉-3-酮组成的混合物, 无色至浅黄色的液体, 稍有气味, 易溶于水。	无致癌及致突变性,对水生 生物有毒性,对陆生生物无 毒害。	不自燃,无爆 炸危险
2-甲基-3(2H)-异噻唑 啉酮(MIT)	无色有一定气味的固体,其主要用于浴液、香波及洗涤液中作防腐 剂,	有毒	可燃
1,2-苯并异噻唑啉-3- 酮(BIT)	微溶于水的固体,是主要的工业杀菌、防腐、防霉剂	有毒	可燃
多聚甲醛 (HCHO)n	分子量(30.03)n, n=8~100, 白色无定形粉末,有甲醛气味。熔点 120℃~170℃,燃点 300℃。易溶于热水并释放出甲醛,缓慢溶于冷水。20℃时水中溶解度 0.24g/100mLH2O。能溶于强碱及碱金属碳酸盐溶液,不溶于乙醇和乙醚。	LD50: 1600mg/kg(大鼠经 口)	易燃,闪点: 71.11℃
溴硝醇 C3H6BrNO4	分子量: 199.99; 白色至淡黄色结晶性粉末,无臭、无味,熔点大于 129~131℃,溴硝醇易溶于水、乙醇、丙二醇,难溶于氯仿、丙酮、苯等。当水溶液呈碱性时会缓慢分解,与某些金属如铝等不能配用。	/	/
2,2-二溴-3-氰基丙酰 胺 C3H2N2OBr2	分子量 241.86, 白色结晶性粉末。熔点 122℃~126℃。可溶于丙酮、聚乙二醇、苯、乙醇等有机溶剂,易溶于水。是一种广谱高效的工业杀菌剂	/	/
溴酸钠 NaBrO3	分子量 150.9,白色结晶或晶状粉末,无味。熔点 381℃,溶于水,不 溶于乙醇。	/	/
硝酸钠 NaNO3	分子量 85, 无色透明或白微带黄色的菱形结晶, 味微苦, 易潮 解。熔点 306.8℃,易溶于水、液氨, 微溶于乙醇、甘油	LD50: 3236mg/kg (大鼠经 口)	/

硝酸铜 Cu(NO3)2	分子量 241.6,蓝色斜方片状结晶。有潮解性。170℃分解放出氧。 易溶于水和乙醇,几乎不溶于乙酸乙酯。0.2mol/L 水溶液的 pH 为 4.0。相对密度 2.05。熔点 114.5℃。	LD50: 940mg/kg (大鼠经 口)	/
N-辛基异噻唑啉酮 (OIT) C11H19NOS	分子量 213.34。透明的深黄褐色液体,沸点为 120℃,不溶于水	低毒	可燃
防霉抗藻剂 ACTICIDE45	一种防霉抗藻剂,黄色液体,有甜味。熔沸点>100℃,相对密度 1.04。饱和蒸汽压: 0.017kPa(20℃)溶于水。	LD50: 279mg/kg (大鼠经 口)	闪点>100℃
敌草隆 C9H10Cl2N2O	一种低毒除草剂,分子量 233.10。纯品为白色结晶固体。熔点范围 158~159℃,易溶于热酒精,25℃时在水中溶解度 42mg/L	LD50: 1017mg/kg(大鼠经 口)	可燃
多菌灵 C9H9N3O2	分子量 191.19, 纯品为白色结晶,工业品为淡黄褐色粉末。熔点范围为 307~312℃(分解),相对密度 1.45,难溶于水和一般有机溶剂	LD50: 6400mg/kg(大鼠经 口)	可燃
二乙二醇 C4H10O3	分子量 245.8, 无色、无臭、开始味甜回味苦的粘稠液体,具有吸湿性,。熔点-8℃,沸点 245.8℃,相对密度 1.12。饱和蒸汽压: 0.13kPa(91.8℃)与水混溶,不溶于苯、甲苯、四氯化碳。	LD50: 16600mg/kg(大鼠经 口)	闪点: 124℃
	分子量 116.07, 无色液体,密度 1.07g/cm³,沸点 100℃,饱和蒸汽 压 2.3kPa (20℃),完全溶于水。	LD50: 2000mg/kg (大鼠经 口)	
四羟甲基氯化磷 C4H12ClO4P	分子量 190.56, 是一种透明的轻微粘稠状,淡黄色的液体(20%,水溶液)。密度 1.322g/cm³, 熔点 154℃,水溶性≥10g/100mL(20℃)。	对皮肤、眼睛有刺激性作用,并可引发皮炎,吸入可引起支气管炎、肺水肿、肺炎等,吞入可引起呕吐、腹痛等症状。	可燃
尿素 CO(NH2)2	分子量 60.06。是一种无色或白色针状或棒状结晶体,工业或农业品为白色略带微红色固体颗粒,无臭无味。密度 1.335g/cm³,熔点 132~135℃。溶于水、醇,不溶于乙醚、氯仿。呈微碱性。加热至 160℃分解,产生氨气同时变为氰酸。	LD50: 14300mg/kg(大鼠经 口)	不燃
磷酸 H3PO4	分子量 98, 纯磷酸为无色结晶, 无臭, 具有酸味。熔点 42.4℃,沸点 260℃,饱和蒸汽压 0.67 (25℃),与水混溶,可混溶于乙醇	LD50: 1530mg/kg(大鼠经口); 2740mg/kg(兔经皮)	不燃

双氰胺	分子量 84.0804。无色针状结晶。相对密度 1.4,熔点 207~209℃。溶于水、乙醇、丙酮水合物、二甲基甲酰胺,难溶于乙醚,不溶于苯,在水中的溶解性 32g/L(20oC)。	低毒, LD50: 10000mg/kg(大	干燥时很稳
C2H4N4		鼠经口)	定,不燃
甲基磷酸 H6P4O13	分子量 337.93。是一种无色透明的粘稠状液体,易潮解,不结晶。 沸点 856℃,相对密度 2.1,有腐蚀性,能与水混溶并水解为正磷 酸。	吸入蒸气或雾,可对呼吸道 产生 刺激和损害作用。皮肤和眼 接触可引起灼伤	不燃
碳酸胍 C2H10N6·H2CO3	分子量 180.17, 白色结晶性粉末,熔点 198℃(部分分解),相对密度 1.25,25℃时,4%的水溶液的 pH 值为 11.2。20℃时在 100g下列溶剂中的溶解度:42g/100g水,0.55g/100g甲醇。几乎不溶于丙酮、苯和乙醚。其水溶液在 80℃以上时慢慢水解,放出氨气并生成尿素	低毒	不易燃
亚磷酸二甲酯	分子量 110.05。是一种无色油状流动性液体。沸点 170~171℃,相	对皮肤和眼睛具有刺激性。	可燃,闪点
C2H7O3P	对密度 1.200(24/4℃),折光率 1.4035。溶于水和多数有机溶剂。		70℃
丙烯酰胺	分子量 71.08。白色结晶固体,熔点 84.5℃,沸点 125℃(3.33kPa),相对密度 1.12,饱和蒸汽压 0.21kPa(84.5℃),溶于水、丙酮、乙醇,不溶于苯。	LD50: 150~180mg/kg(大鼠	可燃,闪点:
CH2=CHCONH2		经口)	138℃,
甲基磷酸二甲酯	分子量 124.08。无色或淡黄色透明液体,沸点 180℃,相对密度		可燃
C3H9O3P	1.16,饱和蒸汽压 0.133kPa(30℃),与水及有机溶剂混溶。		闪点: 90℃
三乙醇胺	分子量 149.19, 无色油状液体或白色固体,稍有氨的气味,熔点 20℃,沸点 335℃,相对密度 1.12,饱和蒸汽压 0.67kPa(190℃),易溶于水。	LD50: 5000~9000mg/kg(大	可燃
C6H15NO3		鼠经口)	闪点: 185℃
异丙醇 C3H8O	分子量 60.1, 无色透明液体,有似乙醇和丙酮混合物的气味,熔点-88.5℃,沸点 80.3℃,相对密度 0.79,饱和蒸汽压 4.40kPa(20℃),溶于水、醇、醚、苯、氯仿等多数有机溶剂。	LD50: 5045mg/kg(大鼠经口)	易燃 闪点: 12℃,爆 炸极限:
丙三醇	分子量 92.09, 无色粘稠液体,无气味,有暖甜味,能吸潮,熔点 20℃,沸点 182℃(2.7kPa),相对密度 1.26,饱和蒸汽压 0.4kPa(20℃),可混溶于醇,与水混溶,不溶于氯仿、醚、油类。	LD50: 12600mg/kg(大鼠经	可燃
C3H8O3		口)	闪点: 160℃

甲醇 CH4O	分子量 32.04, 无色澄清液体, 有刺激性气味, 熔点-97.8℃,沸点 64.8℃,相对密度 0.79。饱和蒸汽压: 13.33kPa(21.2℃)。溶于水, 可混溶于醇、醚等多数有机溶剂。	LD50: 5628mg/kg(大鼠经口); LC50: 83776mg/m³, 4小时(大鼠吸入)	易燃 闪点: 12℃,爆 炸极限: 0.7~ 9.1 (V%)
乙醇 C2H6O	分子量 46, 无色液体,有酒香,熔点-114.1℃,沸点 78.3℃,饱和蒸汽压 5.33kPa (19℃),与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂	LD50: 7060mg/kg(兔经口); LC50: 37620mg/m ³ (大鼠吸入, 10 小时)	易燃,闪点 12℃ 爆炸极限: 3.3~ 19 (V%)
甲醇钠 CH3ONa	分子量 54.02, 白色无定形易流动粉末, 无臭; 沸点>450℃,溶于甲醇、乙醇, 相对密度(水=1)1.3; 化学性质稳定	/	/
甲醛 CH2O	分子量 30.03, 无色, 具有刺激性和窒息性的气体, 商品为其水溶液, 熔点-92℃,沸点-19.4℃,相对密度 0.82。饱和蒸汽压: 13.33kPa(-57.3℃)。易溶于水,溶于乙醇等多数有机溶剂。	LD50: 800mg/kg(大鼠经口); LC50: 590mg/m³(大鼠吸入)	闪点: 50℃ (37%溶 液),爆炸极 限: 7~73 (V%)
氯甲烷 CH3Cl	分子量 50.49,是一种无色气体,有醚样的微甜气味,有麻醉作用。相对密度 0.92,熔点-97.7℃,沸点-23.7℃,饱和蒸汽压:506.62kPa(22℃)。易溶于水、乙醇、氯仿等。	LD50: 1800mg/kg(大鼠经口); LC50: 5300mg/m³, 4 小时(大鼠吸入)	引燃温度 632℃,爆炸极 限:7~19 (V%)
氯化苄 C7H7Cl	分子量 126.58。是一种无色液体,有特殊气味。熔点-39.2℃,沸点 179.4℃,相对密度 1.1,饱和蒸汽压: 2.93kPa(78℃)。不溶于水,溶于乙醇、乙醚、氯仿等有机溶剂。	LD50: 1231mg/kg(大鼠经口); LC50: 778mg/m³, 2 小时(大鼠吸入)	闪点 67℃
C12~C22 烷胺	液体混合物,闪点>100℃,无挥发性,低毒,对皮肤有腐蚀作用, 吞食有害,会引起灼伤。	/	/
邻氯苯腈 C7H4CIN	针状结晶。熔点 43-46℃,沸点 232℃,闪点 108℃。溶于乙醚、乙醇。	高毒物质。急性毒性:口服-小鼠 LD50:>300 毫克/公斤;腹腔-小鼠 LD50:150 毫克/公斤	/

氯苯 C6H5Cl	无色透明,易挥发的液体,有杏仁味。熔点-45℃、沸点 132℃。 可溶于大多数有机溶剂,不溶于水。相对密度(水=1): 1.10,相 对蒸气密度(空气=1): 3.9。	燃爆危险:该品易燃,具刺激性。急性毒性: LD502290mg/kg(大鼠经口);1445mg/kg(小鼠经口)亚急性和慢性毒性:动物亚急性毒性反应有肺、肝、肾病理组织学改变。	/
氯气 Cl2	黄绿色有刺激性气味的气体。分子量 70.91。熔点-101℃、沸点-34.5℃。 易溶于水、碱液。相对密度(水=1)1.47、相对密度(空气=1) 2.48。危险标记: 6(有毒气体)	$LC50850mg/m^3$	/
- 氯丁烷 C4H9Cl	是一种有机化合物,为无色液体,不溶于水,可混溶于乙醇、乙醚 等多数有机溶剂	LD50: 2670mg/kg(大鼠经 口)	/
硫化钠 Na2S	密度: 1.86g/cm³; 熔点: 950℃;外观: 无色结晶性粉末; 溶解性: 易溶于水, 不溶于乙醚, 微溶于乙醇	有腐蚀性,有毒	/
盐酸 HCl	无色或微黄色发烟液体,有刺鼻的酸味。	LC503124ppm	/
氢氧化钠 NaOH	白色不透明固体,易潮解。分子量 40.01。熔点 318.4℃,沸点 1390℃。易溶于水、乙醇、甘油,不溶于丙酮。相对密度(水=1)2.12。危险标记: 20(碱性腐蚀品)。本品不会燃烧,但遇水和水蒸气会大量放热,形成腐蚀性溶液。与酸发生中和反应并放热。具有强腐蚀性。	有强烈刺激和腐蚀性。粉尘 或烟雾刺激眼和呼吸道,腐 蚀鼻中隔;皮肤和眼直接接 触可引起灼伤;误服可造成 消化道灼伤,粘 膜糜烂、出血和休克。	/

4.1.3 企业设施布置

托尔专用化学品(镇江)有限公司各设施布置一览表见表4-4。

表 4-4 厂区主要生产设施一览表

产品	序号	名称	规格型号	数量
	1	缩合釜	20m ³	4
	2	蒸馏釜	11.8m ³	2
	3	环合釜	20m ³	2
	4	分层釜	10m ³	2
	5	精馏塔 /		1
	6	过滤机	DN2300, 4m ²	2
	7	成品包装 设备	300-750kg/包	1
	8	液氯罐式 集装箱	/	2
	9	液氯气化 器	套管式 3*12.5m ²	2
防腐剂	10	液氯气化 热水罐	5.5m ³	1
	11	氯气缓冲 罐	$23m^3$	1
	12	氯苯储罐 68m³		3
	13	盐酸储罐	$68m^3$	1
	14	氯丁烷储 罐	68m ³	1
	15	苯氧基乙 醇(PE) 储罐	72m ³	1
	16	NaOH 储罐	$68m^3$	1
	17	CBN 储罐	$72m^3$	1
	18	降膜吸收	/	1
	1	搅拌容器	20m³, Ф2600x3200	1
	2	搅拌容器	10m³, Ф2400x2200	1
杀菌剂型 号 1	3	滤芯过滤 器	Q=6m³/h,网孔尺 寸: 5um	2
	4	液体灌装 秤	Q=6m³/h,包装规 格: 20kg,200kg, 1000kg	1
	5	TANK 储 罐	7820*2550*2670	1

	6	TANK 储 罐	7820*2550*2670	1
	7	膜堆过滤 器	Q=6m³/h,网孔尺 寸: 0.45μm	2
	1	搅拌容器	10m³, Ф2400x2200	1
	2	研磨容器	10m³, Ф2200x2200	1
	3	质检容器	10m³, Ф2200x2200	1
杀菌剂型 号 2	4	水平磨砂 机	80L	1
	5	篮式过滤 器	Q=6m ³ /h,网孔尺寸: 0.1mm	2
	6	液体灌装秤	Q=6m ³ /h, 包装规 格: 20kg, 200kg, 1000kg	1
	1	反应釜	10m³, Ф2400x2200	1
	2	冷凝器	20m³, Ф1200x1000	1
	3	冷凝器	4m ³ , Φ100x100	1
	4	蒸馏塔	0.3m³, Φ300x4000,陶瓷填 料,填料高度: 3m	1
织物阻燃	5	精馏受槽	1.5m ³ , Φ1300x2000	1
树脂	6	精馏受槽	1.5m³, Φ1300x2000	1
	7	真空泵	真空能力: 10KPa(a)	1
	8	液体灌装秤	Q=6m ³ /h, 包装规 格: 20kg, 200kg, 1000kg	1
	9	滤芯过滤 器	Q=6m³/h,网孔尺 寸: 5um	1
季铵盐类 化合物	1	反应釜 (BHQ、 SBQ)	10m³, Ф2400x2200	1
	2	反应釜 (BAC、 CTC、 DDQ)	20m³, Ф2600x3200	1
	3	缓冲罐	15m³, Ф2400x3120	1
	4	防爆缓冲 罐	20m³, Ф2400x4200	1
	5	造粒装置	旋转式	1
	6	真空泵	真空能力: 10KPa(a)	3

	7	液体灌装 秤	Q=6m ³ /h,	1
	8	固体包装 秤	Q=1000kg/h,	1
	9	滤芯过滤 器	Q=6m ³ /h,网孔尺寸: 5um	1
	1	氯甲烷储 罐	V=40m ³	1
	2	氯甲烷储 罐	V=40m ³	1
	3	甲醇储罐	V=50m³, 立式固顶 罐, Φ*L=3200×3800	1
	4	氯甲烷压 缩机分离 罐	V=1m ³	1
	5	异丙醇储 罐	V=50m ³	1
	6	甲醛储罐	V=50m ³	1
<i>κ</i> # Γ.σ.	7	苄基氯储 罐	V=40m ³	1
罐区	8	胺液储罐	V=50m ³	3
	9	胺液储罐	V=30m ³	1
	10	氯苯储罐	68m³, 常压	3
	11	氢氧化钠 储罐	68m³,常压	1
	12	氯丁烷储 罐	68m³,常压	1
	13	盐酸储罐	68m³,常压	1
	14	邻氯苯腈 (CBN)	72m³,常压	1
	15	苯氧基乙醇(PE) 储罐	78m³,常压	1
	1		能力 6.5Nm³/min	1
	2	⇒ IT ↓II	能力 6.5Nm³/min	1
公用工程	3	空压机	能力 6.5Nm³/min	1
	4		能力 6.5Nm³/min	1
	5	空气储罐	1.14m ³	1
	6	空气储罐	6.6m ³	1
	7	空气储罐	5m ³	1
	-			

8	反渗透水 系统	能力 5t/h	1
9	变压器	2000KVA	1
10			1
11	冷冻水装	│ 负荷 140KW,螺杆	1
12	置	式冷冻机组	1
13			1
14	冷却水系 统	240m³/h	1
15	柴油发电 机	发电量 400kW	1
16	液氮储罐	V=20m ³	1
17	污水处理	/	1
18	消防水系 统	消防水池 V=1000m³	1
19	燃气锅炉	Y3-300A-GT	1
20	电动葫芦	HBS1-6m ³	1
21	电动葫芦	HBS1-4m ³	1
22	电动葫芦	HBS1-6m ³	1
23	曳引式客 机	3110	1
24	防爆货梯	3250	1
25	防爆电动 叉车	科朗	1
26	防爆叉车	二菱	2

4.1.4 各设施生产工艺与污染防治情况

4.1.4.1 新型防腐剂

工艺流程简述:

①缩合

反应釜计量加入储罐料液体邻氯苯腈,启动搅拌,通过带滤袋除尘器的固体投料装置定量加入固体硫化钠及催化剂,计量加入储罐来料氯苯,维持搅拌,反应釜加热到60-90°C(常压),控温加入定量储罐物料氯丁烷或套用蒸馏氯丁烷。反应完全后分两次加入水洗涤,通过两相分离去除无机相(去公司污水处理站进行三效蒸发收集无机盐、水经废水处理合格排放至新区废水处理公

司),反应物有机相转移至环合反应釜。

缩合过程化学反应方程式:

②环合

缩合反应的有机相进入进入蒸馏釜,蒸汽加热,减压蒸馏去除氯苯和缩合副产物,冷却后转入环合釜中,提纯后的缩合物中计量加入储罐料或降膜系统的盐酸和定量催化剂,控温30-50℃计量通入配方量的氯气(液氯经蒸发器气化),反应中产生的尾气(主要为氯化氢)经降膜系统吸收制成盐酸回收利用。氯化反应物料通过计量加入配方量的水,加热保温(100℃以下)熟化至反应物达控制指标后进行反应釜冷却。混合浆料通过三合一压滤器压滤,滤饼经氯苯、水洗涤后干燥,得成品防腐剂。滤液(水、氯苯、氯丁烷)进入分层釜进行油水分离,水相进入污水处理站,经过芬顿氧化、生化等水处理,合格排放至新区废水处理公司。有机相进入蒸馏釜进行加热蒸馏,回收氯苯和氯丁烷。

环合过程化学反应方程式:

 $C_{11}H_{13}NS+H_2O+CI_2$ * $C_7H_5NOS+C_4HgCl+HCl$

副反应:

C7H5NOS+CI2—n C7H4NOSCI+HCI

③包装

干燥得到的滤饼产物,通过密闭传送带输送至包装机料仓,包装机自动计重包装,达包装规格自动停止下料。包装过程中包装机自动对包装袋进行吹气和抽气操作,无袋口敞开过程,以减少下料口粉尘。

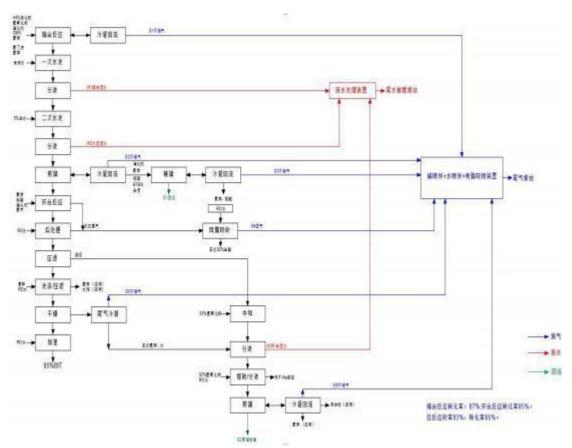


图 4-1 新型防腐剂生产工艺流程图

4.1.4.2 杀菌剂型号1

工艺流程简述:

该产品为常温物理混配过程,不存在任何化学反应。主要有投料、混合、检测、灌装过程。将产品生产所需原料依次加入混合釜内,粉料加料口设置粉尘集气罩收集粉尘,经管道送至湿法系统处理,液体物料泵送入混合釜内;启动搅拌装置进行搅拌,搅拌过程中少量甲醛气体挥发,经管道集中输送至废气碱洗塔处理;原料充分混合后,在反应釜上设置的专门的加料口加入少量盐酸或氢氧化钠来调节pH,该加料口上设置有集气罩,经管道集中输送至废气碱洗塔处理;检测合格后的产品再进入灌装机过滤灌装。整个生产工程在常温常压下进行。反应釜内清洗水回用于下一批料的生产,低浓度清洗水排放至废水处理系统。各类废气收集率在95%以上,剩余部分(未能收集部分)则作为无组织废气排入车间环境中。

图4-2 杀菌剂型号1 生产工艺流程图

4.1.4.3 杀菌剂型号 2 和个人护理用品杀菌剂

杀菌剂型号2和个人护理用品杀菌剂生产过程近似,为常温物理混配过程, 不存在任何化学反应。主要有投料、混合、研磨、检测、灌装过程。

将产品生产所需原料依次加入混合釜内、粉料加料口设置粉尘集气罩收集 粉尘, 经管道送至湿法除尘系统处理, 液体物料泵送入混合釜内启动搅拌装置 进行搅拌,搅拌混合至均匀:然后关闭釜内搅拌器,取样检测,检测合格的物 料进入砂磨机,研磨至合格的粒径后由灌装机进行灌装。反应釜内高浓度清洗 水回用于下一批料的生产, 低浓度清洗水排放至废水处理系统。

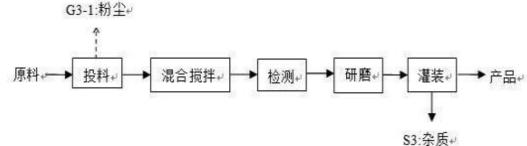


图 4-3 杀菌剂型号 2 和个人护理用品杀菌剂工艺流程图 4.1.4.4 织物阻燃树脂系列

(1) 工艺流程简述:

1、AflammitKWB产品

AflammitKWB产品分两步合成, 化学反应方程式如下: 第一步反应:

第二步反应:

DMPPA (中间体)

甲醛

Aflammit KWB

2、FlammentinFMB产品

FlammentinFMB产品为一步合成,化学反应方程式如下:

多基磷酸

碳酸胍

Flammentin FMB

3、FlammentinMSG产品

FlammentinMSG产品为一步合成,操作时分两步进行,先配制多基磷酸,再进行合成反应,化学反应方程式如下:

原料配制:

甲基膦酸

双氰胺

Flammentin MSG

4、AflammitSAP产品

AflammitSAP产品为一步合成, 化学反应方程式如下:

尿素

四羟甲基氯化磷

AflammitSA 工艺流程

(2) 生产工艺流程

1 Aflammit KWB

依次向反应釜中加入丙烯酰胺、亚磷酸二甲酯、甲醇,启动搅拌装置使原料完全溶解;然后通入蒸汽间接加热反应釜中物料,温度达到40℃时,加入催化剂甲醇钠,继续加热并维持温度在50~55℃,待反应完全后,将反应釜加热至70~75℃,蒸馏出物料中的甲醇溶剂。蒸馏出来的甲醇气体经二级冷凝装置冷凝后收集至废甲醇桶里,不凝气经废气碱洗塔处理后排放。

反应釜中物料精馏去甲醇后,接着加入甲醛、NaOH溶液,pH值在9.0~9.5 之间,并维持温度在68℃左右,进入第二步反应过程,发应完成后,启动循环 冷却系统将物料冷却至室温,然后加入磷酸调节pH值,最后产品经滤袋过滤后 就可下料包装。

反应釜自带冷凝装置,操作过程中产生的挥发性废气大部分经冷凝后回流 入反应釜,少量不凝尾气经废气碱洗塔处理后排放。该产品粉未物料投料过程 中产生的粉尘由集风罩收集后并入布袋收尘器处理后排放。

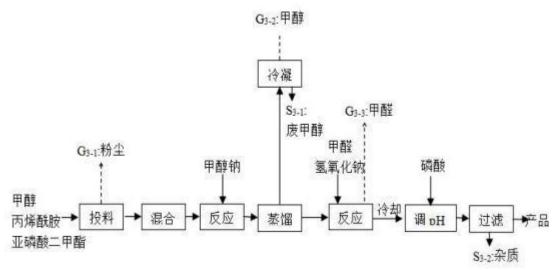
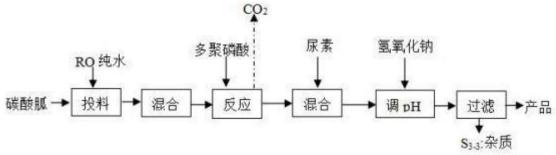


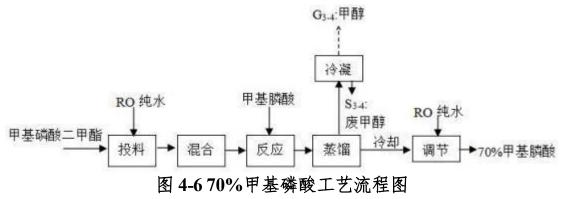
图 4-4 KWB 产品工艺流程图

2. Flammentin FMB

依次向反应釜中加入碳酸胍溶液、反渗透水,启动搅拌装置使原料完全混合;打开冷却水系统,然后缓慢地加入多基磷酸(此反应为带有CO2排放的放热反应,反应温度控制在45℃以下),待反应完成后再加入尿素,继续搅拌使物料混合均匀,接着加入50%的NaOH溶液调节反应液的pH值,最后产品经滤袋过滤后就可下料包装。

该产品生产过程中除CO2外,基本上无其它废气污染物产生和排放。




图 4-5 FMB 产品工艺流程图

3. Flammentin MSG

(1) 70%甲基磷酸制备

依次向反应釜中加入甲基磷酸二甲酯、反渗透水,启动搅拌装置使原料完全混合;然后通入蒸汽间接加热反应釜中物料,温度达到125℃时,加入70%甲基膦酸作为反应引发剂,物料开始反应;待反应完成后,启动蒸馏系统并将反应产生的甲醇蒸出,蒸出的甲醇等经冷凝器冷凝后直接放入废液桶贮存待处理;蒸馏结束后,启动循环冷却装置对物料进行冷却,然后加入反渗透水调节产品浓度至70%,制备好的甲基膦酸在原反应釜中待用。

反应釜自带冷凝装置,操作过程中产生的挥发气大部分经冷凝后回流入反应釜,少量不凝气经管道引至碱洗塔处理后排放。

(2) 产品合成

依次向反应釜中加入70%甲基膦酸、反渗透水,启动搅拌装置使原料完全混合;然后通入蒸汽间接加热反应釜中物料,温度达到95℃时,加入双氰胺进行发应,待反应完成后启动循环冷却装置对物料进行冷却,冷却后产品可进行下料包装。

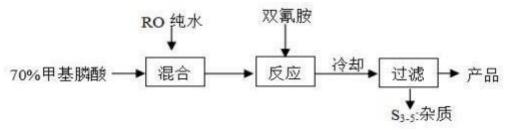


图 4-7 MSG 产品工艺流程图

4. Aflammit SAP

依次向反应釜中加入四羟甲基氯化磷、尿素、反渗透水,启动搅拌装置使 原料完全混合;然后通入蒸汽间接加热反应釜中物料,温度达到100℃时,开始 反应,待反应完成后启动循环冷却装置对物料进行冷却,然后加入三乙醇胺调 节反应液pH值,最后产品经滤袋过滤后就可下料包装。

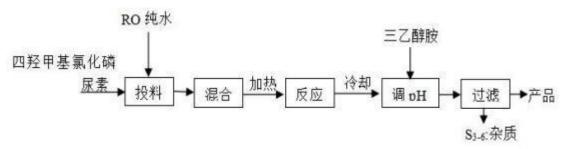
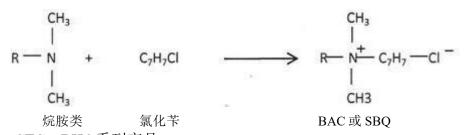
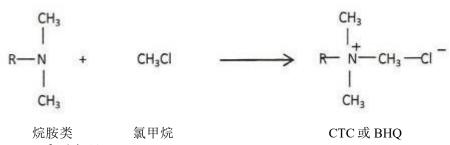
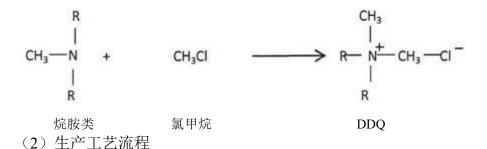



图 4-8 SAP 产品工艺流程图


4.1.4.5 季铵盐类化合物

- (1) 生产工艺原理
- 1、BAC、SBQ系列产品


BAC、SBQ系列产品均为一步合成,化学反应方程式如下:

2、CTC、BHQ系列产品

3、DDQ系列产品

季铵盐类化合物中BAC系列、CTC系列和DDQ系列产品生产工艺相同, BHQ和SBQ产品生产工艺相同。所有物料均为液体,加料为管道泵送入反应 釜,在密闭条件下反应。

1、BAC、CTC、DDQ系列产品

依次向反应釜中加入反应所需烷胺类原料,启动搅拌装置使原料完全混合;然后通入蒸汽间接加热反应釜中物料,温度达到100℃时,再加入另一类原料(氯化苄/氯甲烷)后开始反应,反应过程中反应釜完全密闭,待反应完成后启动循环冷却装置对物料进行冷却,然后加入盐酸或50%的NaOH溶液调节反应液pH值,最后产品经滤袋过滤后就可下料包装。

在加料及冷却后出料、中和调节等过程中产生的少量挥发废气则经集气罩 收集后,纳入碱洗塔集中处理后高空排放。

由于本项目使用的烷胺类物料及生成的季铵盐类化合物的沸点较高,无挥发性,且反应温度相对较低,反应过程中也不会分解为低分子胺类物质,因此,该类产品生产过程中不会产生胺类恶臭物质(高分子量烷胺也不属恶臭物质)。

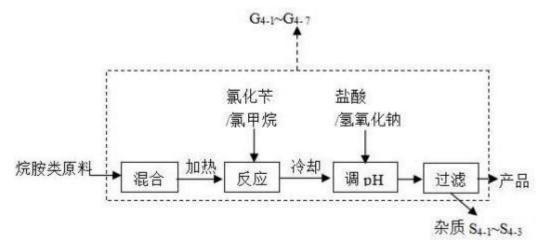


图 4-9 BAC、CTC、DDQ 系列产品工艺流程图

2、BHQ、SBQ系列产品

依次向反应釜中加入反应所需烷胺类原料,启动搅拌装置使原料完全混合;然后通入蒸汽间接加热反应釜中物料,温度达到100℃时,再加入另一类原料(氯化苄/氯甲烷)后开始反应,反应过程中反应完全釜密闭,待反应完成后启动循环冷却装置对物料进行冷却,然后加入水、盐酸或50%的NaOH溶液调节反应液pH值,然后将反应釜内物料在氮气保护下压入造粒机造粒,同时通过150℃导热油对造粒机出口处进行加热,温度维持在85℃,造粒成型后的产品经冷却后包装入库。

在加料及冷却后出料、中和调节及造粒等过程中产生的少量挥发废气则经 集气罩收集后,纳入碱洗塔集中处理后高空排放。

由于本项目使用的烷胺类物料及生成的季铵盐类化合物的沸点较高,无挥发性,且反应温度相对较低,反应过程中也不会分解为低分子胺类物质,因此,该类产品生产过程中不会产生胺类恶臭物质(高分子量烷胺也不属恶臭物质)。

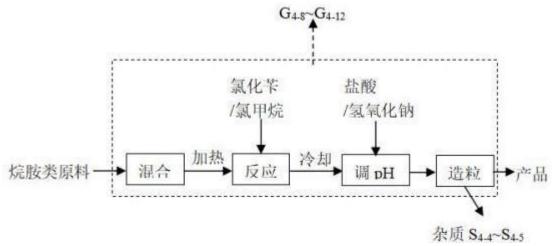
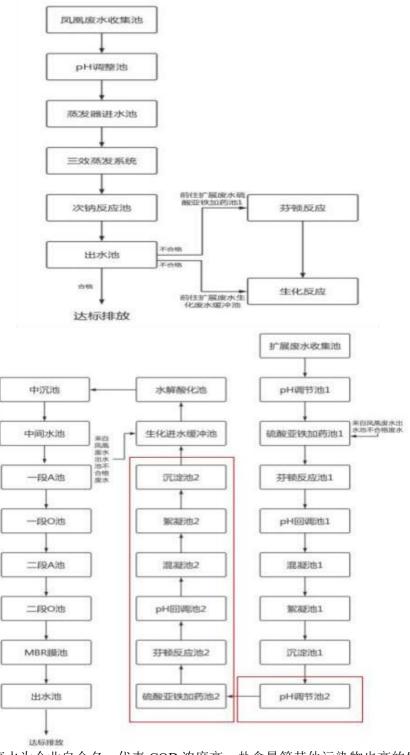


图 4-10 BHQ、SBQ 系列产品工艺流程图

4.1.5 污染产排情况及污染物种类分析


(一) 废水污染物

托尔专用化学品(镇江)有限公司生产过程实现了清污分流和雨污分流, 分别处理后排放。

公司依靠一座150m³/h的污水处理站,采用"三效蒸发除盐+芬顿+两段AO+MBR"工艺。该项目废水有工艺废水、废气处理废水、设备地面冲洗废水、实验室废水、生活污水,以及蒸汽冷凝水、设备冷却排水等,建成后该项

目生产废水接入新建污水处理站预处理,生活污水经化粪池处理,尾水一起接管至镇江海润水处理有限公司,原20m³/h污水处理站备用。

废水处理工艺流程图如下:

注: 1.凤凰废水为企业自命名,代表 COD 浓度高,盐含量等其他污染物也高的生产废水。2.红色框内为备用池。

图4-11 企业废水处理流程图

一污	,	., -		排		处理设	
染类别	污染 源	产生工序	污染因子	放规律	工艺与设 计处理能 力	废水 回用 量	实际建设
	工艺废水	生产	全盐量、SS、 COD、总磷、 氨氮、氯苯类				24
废水	废气 处理	废气处 理废水	全盐量、SS、 COD、甲醛、 氯苯类				一座 150m³/h 的污水处理 站,采用
	设备 地面 冲洗	设备地 面冲洗 废水	SS、COD、总 磷、氨氮	连续	150m ³ /h	/	"三效蒸发 除盐+芬顿+ 两段 AO+MBR"
	实验 室	实验室 废水	SS、COD				工艺
	锅炉	锅炉排 水	SS、COD				
	生活 污水	生活污 水	SS、COD、总 磷、氨氮				化粪池

表 4-5 废水主要污染物的产生、处理和排放情况

(二) 废气污染物

1、有组织废气及污染防治措施

(1) 含尘废气

该车间杀菌剂1#及2#产品、阻燃树脂产品均按批次进行生产,固体原料较多,配料和投料时间较长,在相应粉料投放点均设置集气罩收集含尘废气杀菌剂1、杀菌剂2各1套湿式除尘器,通过DA004和DA005排气筒排放。杀菌剂产品、阻燃剂产品挥发性、酸性气体以及阻燃剂产品含尘废气通过碱洗塔后经DA001排气筒排放。

(2)工艺废气-新型防腐剂、杀菌剂生产酸性废气及有机废气新型防腐剂生产反应后接冷凝回收装置,排放尾气全部进入该项目新建的"碱喷淋+水喷淋+树脂吸附"装置进行处理,处理后的尾气与现有季铵盐类车间3#排气筒(编号为DA002,高度为25米)合并排放大气。

(3) 工艺废气-新型防腐剂投料粉尘

在投料时产生一定的投料粉尘,通过设置在投料口的吸风装置收集后,经布袋除尘处理,处理后的粉尘废气通过新设置的DA006排气筒(高度为20米)排放大气。

(4) 工艺废气-杀菌剂投料粉尘

杀菌剂投料装置产生的投料粉尘,通过集气罩收集后,经湿法除尘装置处 理,处理后的粉尘废气通过新设置的DA009排气筒(高度为20米)排放大气。

(5) 锅炉燃烧废气

新增一台燃气锅炉,与原有锅炉同时使用。燃烧废气通过原有的DA010排 气筒(15米)排放大气。

(6) 储罐呼吸废气

呼吸废气经呼吸阀排出,尾部连接至新设置的活性炭吸附装置,尾气经过 现有的DA003排气筒(15米)排放大气。

(7) 危废仓库和污水站废气

危废仓库和废水处理站产生的废气通过新设置的一套"碱喷淋+水喷淋+活 性炭吸附"装置处理后由新设置的DA008排气筒(20米)排放大气。

2、无组织废气及污染防治措施

无组织废气主要为未完全收集的生产废气。无组织废气主要控制措施有:

- (1) 生产装置采用密封:
- (2) 加强管理, 所有操作严格按照既定的规程进行;
- (3) 安装良好的通风设施;
- (4) 挥发性有机液体储罐配有呼吸阀、液位计、高液位报警仪以及防雷、 防静电等设施。

产生 污染类别 污染源 污染因子 处理设施 工序 杀菌剂及阻燃 氯化氢、甲 剂车间 生产 醛、挥发性有 碱喷淋 #2排气筒(南

表4-6 废气排放及处理情况一览表

排气筒编号 DA001 机物、甲醇 碱洗塔) 氯甲烷、挥发 有组织废 季铵盐类车间 性有机物、氯 碱喷淋+水 气 #3 排气筒(北 生产 化氢、氯气、 喷淋+树脂 DA002 碱洗塔) 氯苯、 吸附 甲醛 甲醇、挥发性 罐区活性炭罐 储罐 活性炭吸附 DA003 有机物、氯苯 生产 DA004 杀菌剂排气筒 颗粒物 湿式除尘

	(32 区湿法除 尘器)				
	杀菌剂湿法除 尘器排气筒 (31区)	生产	颗粒物	湿式除尘	DA005
	防腐剂投料粉 尘	生产	颗粒物	布袋除尘	DA006
	废水站、危废 仓库废气	储 存、 水处 理	氯化氢、挥发 性有机物、氯 苯	水喷淋+碱 喷淋+活性 炭吸附	DA008
	二期杀菌剂投 料废气排放口	生产	颗粒物	布袋除尘	DA009
	燃烧废气	锅炉	二氧化硫、氮 氧化物、颗粒 物、林格曼黑 度	低氮燃烧器	DA010
无组织废 气	生产车间	生产	颗粒物、氯 苯、氯化氢、 甲醛、非甲烷 总烃	车间通风系 统排放室外	/

(三)固体废物

企业危废仓库在厂区北侧,总面积为726平方米,分为东、西2个隔间,西侧隔间面积约230平方米,内部安装多层货架专门用于贮存废盐。东侧隔间面积约496平方米,用于贮存废包装材料、废水处理污泥、废活性炭等危险废物。危险废物存放于专用室内仓库,地面采用水泥地基进行基础防渗,以达到防渗要求,危险废物分类存放并设置标志,危废贮存过程产生的废气经碱吸收+活性炭吸附塔预处理后排放大气;将废物的产生、贮存、处置等情况纳入生产记录,并建立有危险废物的管理台账和企业内部产生和收集、贮存、转移等交接制度。危险废物的存放(堆放)可满足《危险废物贮存污染控制标准》(GB18597-2023)、《省生态环境厅关于进一步加强危险废物污染防治工作的实施意见》(苏环办[2019]327号)的相关要求。

企业固废产生及处置情况汇总如下:

表 4-7 企业固废源汇总表

——— 序 号	危险废物名称	固废属性	代码	实际处置量 (t/a)	最终去向
1	季铵盐造粒杂质	 危险废 物	HW45 (261- 085-45)	1.897	
2	阻燃树脂过滤杂质	危险废 物	HW13 (265- 103-13)	3.871	
3	季铵盐过滤杂质	危险废 物	HW45 (261- 084-45)	2.228	
4	杀菌剂过滤残液	危险废 物	HW04 (263- 010-04)	14.943	
5	湿除尘器污泥	危险废 物	HW04 (263- 010-04)	1.481	
6	污水处理站污泥	危险废 物	HW13 (265- 104-13)	72	
7	废活性炭	危险废 物	HW49 (900- 039-49)	20	新宇、南 通润启、
8	废蓄电池	危险废 物	HW31 (900- 052-31)	2	弘成环 保、常州
9	废润滑油	危险废 物	HW08 (900- 214-08)	1	天耀、扬 州鼎范
10	废包装物	危险废 物	HW49 (900- 041-49)	43	
11	实验室废物	危险废 物	HW49 (900- 047-49)	16	
12	阻燃树脂蒸馏废液	危险废 物	HW06 (900- 404-06)	518.8	
13	除尘器粉尘	危险废 物	HW11 (900- 013-11)	1.52	
14	废水蒸发残渣	危险废 物	HW49 (900- 000-49)	2955	
15	蒸馏、精馏残渣	危险废 物	HW11 (900- 013-11)	895	
16	生活垃圾	一般废物	/	18	环卫部门

4.2 企业总平面布置

托尔专用化学品(镇江)有限公司位于江苏省镇江市新材料产业园西部,镇江新区金港大道182号,工厂南大门正对金港大道。厂区东侧为新材料产业园管委会,南侧为金港大道,西侧为昌河化工,北侧为光大环保能源(镇江)有限公司,厂区边界点见表4-8,厂区平面布置具体见图4-12。

表4-8厂区边界点坐标

	经组	
地块边界点	X	Y
J1	3559686.616	509844.373
J2	3559716.824	509911.023
J3	3559585.531	510092.213
J4	3559548.094	510094.244
J5	3559550.261	510134.187
Ј6	3559525.298	510135.541
J7	3559523.131	510095.599
Ј8	3559460.480	510098.998
J9	3559447.369	509857.354

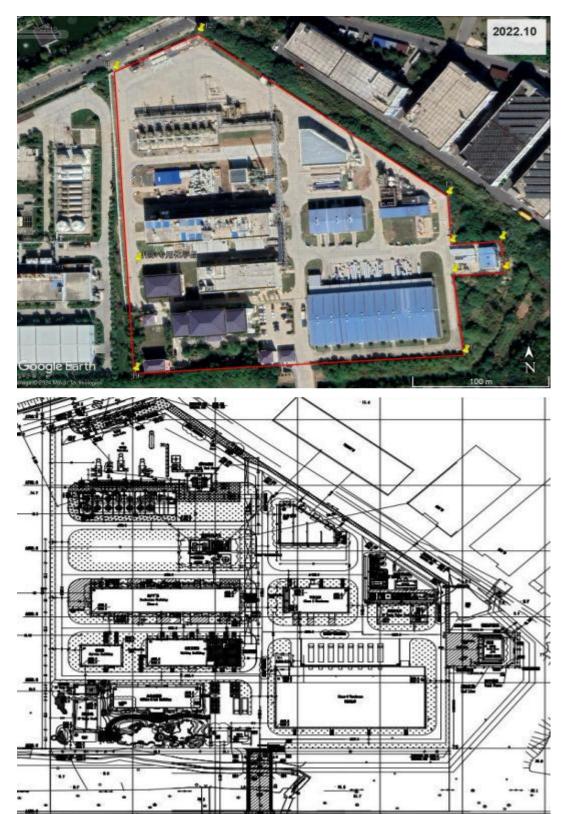


图 4-12 托尔专用化学品(镇江)有限公司平面布置图 4.3 各重点场所、重点设施设备情况

根据人员访谈、现场排查识别可能通过渗漏、流失、扬散等途径导致土壤或地下水污染的重点场所和重点设施,本次主要重点场所有生产区、罐区、三

废处置区、仓库区等。各重点场所、重点设施设备情况见表4-6。

表4-6 重点场所、重点设施设备情况表

	重点场所	用途	重点设施
1	生产区	杀菌剂、防腐剂、织物阻燃 剂树脂、季铵盐类化合物的 合成生产	生产厂房
		液氯气化	液氯车间
			氯甲烷储罐
			甲醇储罐
			异丙醇储罐
			甲醛储罐
	罐区	氯甲烷、甲醇、异丙醇、甲	苄基氯储罐
2		醛、苄基氯、胺液、氯苯、 氢氧化钠、氯丁烷、盐酸、 邻氯苯腈、苯氧基乙醇等存 放	胺液储罐
2			氯苯储罐
			氢氧化钠储罐
			氯丁烷储罐
			盐酸储罐
			邻氯苯腈储罐
			苯氧基乙醇储罐
			危废仓库
3	 三废处置区	厂区污水处理、危废存放、	污水站
	一次人旦已	热量提供等	初期雨水池/应 急池
	仓库区	原辅料及成品存放	甲类仓库
4	世/年区	冰細骨及风阳骨瓜	丙类仓库

5 重点监测单元识别与分类

5.1 重点单元情况

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)、《重点监管单位土壤污染隐患排查指南(试行)》等相关技术规范的要求排查企业内有潜在土壤污染隐患的重点场所及重点设施设备,将其中可能通过渗漏、流失、扬散等途径导致土壤或地下水污染的场所或设施设备识别为重点监测单元。

重点场所或重点设施设备分布较密集的区域可统一划分为一个重点监测单元。

本项目重点单元情况见表5-1,重点单元划分见图5-1。

表 5-1 重点监测单元清单 占地面积 (m²) 单元内需要监测的重 点场所/设施/设备名 重点场所/设施

单元序号	占地面积 (m²)	中元内需要监测的里 点场所/设施/设备名 称	重点场所/设施/设备坐标 (中心点坐标)
単元 A	2200	生产厂房	N32.159217°;E119.605868°
半儿 A	3200	液氯车间	N32.159582°;E119.606180°
单元 B	3159	储罐区	N32.159947°;E119.605716°
单元 C	726	危废仓库	N32.159771°;E119.606751°
単元 D	4900	甲类仓库	N32.159267°;E119.606867°
平儿 D	4900	丙类仓库	N32.158581°;E119.607081°
当 一		污水站	N32.159330°;E119.607380°
単元 E	1800	初期雨水池/应急池	N32.159189°;E119.607377°

图 5-1 重点单元划分图

5.2 识别/分类结果及原因

识别重点监测单元目的是为了确定污染物源头和可能的渗透途径。按照下表中划分依据确定本厂区的重点监测单元。

单元类别	划分依据
一类单元	内部存在隐蔽性重点设施设备的重点监测单元
一类单元	除一类单元外其他重占监测单元

表 5-2 重点监测单元分类表

注:隐蔽性重点设施设备,指污染发生后不能及时发现或处理的重点设施设备,如地下、半地下或接地的储罐、池体、管道等。

根据现场资料收集、现场踏勘、以及人员访谈的调查结果,并综合考虑污染源分布、污染物类型、污染物迁移途径等因素,项目组对托尔专用化学品(镇江)有限公司重点场所和重点设施进行了识别,确定了重点监测单元,识别过程如下:

表 5-3 重点监测单元识别情况

序号	单元内需要监测的重点场 所/设施/设备名称	设施坐标 (中心点坐标)	是否有隐蔽 性设施	单元 类别	识别原因	
	生产厂房	N32.159217°; E119.605868°	是		此区域为托尔专用化学品(镇江)有限公司生产 区,主要进行杀菌剂、防腐剂、织物阻燃剂树脂、	
单元 A	液氯车间	N32.159582°; E119.606180°	否	一类	季铵盐类化合物的合成生产及液氯气化。生产过程过程可能会有污染物跑冒滴漏,从而造成土壤和地下水产生污染。生产厂房东侧有污水收集井,深度约地下3米,属于隐蔽设施,因此识别为一类单元。	
单元 B	储罐区	N32.159947°; E119.605716°	否	二类	此区域为托尔专用化学品(镇江)有限公司储罐区,主要涉及氯甲烷、甲醇、异丙醇、甲醛、苄基氯、胺液、氯苯、氢氧化钠、氯丁烷、盐酸、邻氯苯腈、苯氧基乙醇等物质的存放,在储罐装卸过程可能会有污染物跑冒滴漏,从而造成土壤和地下水产生污染。此单元内不存在地下设施,因此识别为二类单元。	
单元 C	危废仓库	N32.159771°; E119.606751°	否	二类	本区域为托尔专用化学品(镇江)有限公司危废仓库,主要存放生产产生的危险废物,在危废转运过程中,可能会有污染物跑冒滴漏,从而造成土壤和地下水产生污染。此单元内不存在地下设施,因此识别为二类单元。	
×	甲类仓库	N32.159267°; E119.606867°	否	214	本区域为托尔专用化学品(镇江)有限公司仓库区,有甲类仓库、丙类仓库,存放生产所用的原辅	
単元 D	丙类仓库	N32.158581°; E119.607081°	否	二类	料及成品,储运过程可能会有污染物跑冒滴漏,造成土壤和地下水产生污染。此单元内不存在地下设	

					施,因此识别为二类单元。
×	污水站	N32.159330°; E119.607380°	是	N/A	本区域为托尔专用化学品(镇江)有限公司污水站和应急池,其中废水调节池、废水排放池、初期雨
单元 E	初期雨水池/应急池	N32.159189°; E119.607377°	是	一类	水池/应急池为地下池,深度约地下 4 米,属于隐蔽 设施,因此识别为一类单元。

5.3 关注污染物

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)中监测因子筛选原则以及相关要求:初次监测原则上所有土壤监测点的监测指标应至少包括GB36600-2018表1中列举的所有基本项目,地下水监测井的监测指标至少包括GB/T14848-2017表1中常规指标(微生物指标、放射性指标除外)以及企业涉及的所有关注污染物进行分析测试。

企业涉及的关注污染物包括:

- (1) 企业环境影响评价文件及其批复中确定的土壤和地下水特征因子;
- (2) 排污许可证等相关管理规定或企业执行的污染物排放(控制)标准中可能 对土壤或地下水产生影响的污染物指标;
- (3) 企业生产过程的原辅用料、生产工艺、中间及最终产品中可能对土壤或地下水产生影响的,已纳入有毒有害或优先控制污染物名录的污染物指标或其他有毒污染物指标;
- (4) 上述污染物在土壤或地下水中转化或降解产生的污染物;
- (5) 涉及HJ164附录F中对应行业的特征项目(仅限地下水监测)。

以上5条所涉及的部分特征因子不在GB36600-2018标准中,且暂无相关环境分析方法的,暂不做相关检测,待有相关国家标准更新,再进行检测。

根据以上原则及要求,对托尔专用化学品(镇江)有限公司涉及的污染物进行了筛选与统计,具体见表5-4。

单元内需要监测 功能(即该重点场 序号 的重点场所/设施 所/设施/设备设计的 关注污染物								
ハロ か たった	关注污染物							
/设备名称								
单元 A 生产厂房	字噻唑啉-3-酮、溴硝二溴-3-氰基丙酰胺、甲醛、溴酸钠、硝酸 N-辛基 体酮、敌草隆、多菌 二醇、马来酸、丙烯 磷酸二甲酯、甲醇、 磷酸、碳酸胍、尿 磷酸、甲基磷酸二甲							

表 5-4 污染物情况表

	液氯车间	液氯气化	磷、三乙醇胺、氯化苄、碳十二烷胺、碳十四烷胺、碳十六烷胺、碳十二烷胺、碳十八烷胺、碳十八烷胺、氯甲烷、乙醇、异丙醇、丙三醇、硫化钠、氯苯、邻氯苯腈、氯丁烷、氯气
单元 B	储罐区	氯甲烷、甲醇、异 丙醇、甲醛、苄基 氯、胺液、氯苯、 氢氧化钠、氯丁 烷、盐酸、邻氯苯 腈、苯氧基乙醇存 放	氯甲烷、甲醇、异丙醇、甲醛、苄基氯、叔胺、氯苯、氢氧化钠、氯丁烷、盐酸、邻氯苯腈、苯氧基乙醇
— 单元 C	危废仓库	厂区危废存放	VOCs、SVOCs、石油烃 (C10-C40)
	甲类仓库	原辅料存放	2-甲基-3(2H)-异噻唑啉酮、
单元 D	丙类仓库	产品存放	1,2-苯并异噻唑啉-3-酮、溴硝醇、2,2-二溴-3-氰基丙酰胺、酚胺 化
	污水站	厂区废水处理	pH值、氯苯类、全盐量、总
单元 E 	初期雨水池/应急 池	初期雨水、消防废 水存放	磷、悬浮物、化学需氧量、甲 醛、氨氮

6 监测点位布设方案

6.1 重点单元及相应监测点/监测井的布设位置

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)可知监测点位的布设原则如下:

- (1) 监测点位的布设应遵循不影响企业正常生产且不造成安全隐患与二次污染的原则。
- (2) 点位应尽量接近重点单元内存在土壤污染隐患的重点场所或重点设施设备,重点场所或重点设施设备占地面积较大时,应尽量接近该场所或设施设备内最有可能受到污染物渗漏、流失、扬散等途径影响的隐患点。
- (3) 根据地勘资料,目标采样层无土壤可采或地下水埋藏条件不适宜采样的区域,可不进行相应监测,但应在监测报告中提供地勘资料并予以说明。

6.1.1 土壤监测点

6.1.1.1 土壤监测点置及数量

- (1)一类单元:一类单元涉及的每个隐蔽性重点设施设备周边原则上均应 布设至少1个深层土壤监测点,单元内部或周边还应布设至少1个表层土壤监测 点。
- (2) 二类单元:每个二类单元内部或周边原则上均应布设至少1个表层土壤监测点,具体位置及数量可根据单元大小或单元内重点场所或重点设施设备的数量及分布等实际情况适当调整。监测点原则

上应布设在土壤裸露处,并兼顾考虑设置在雨水易于汇流和积聚的区域,污染途径包含扬散的单元还应结合污染物主要沉降位置确定点位。

6.1.1.2 土壤采样深度

- (1) 深层土壤: 深层土壤监测点采样深度应略低于其对应的隐蔽性重点设施设备底部与土壤接触面; 下游50m范围内设有地下水监测井并按照本标准要求开展地下水监测的单元可不布设深层土壤监测点。
- (2) 表层土壤:表层土壤监测点采样深度应为0~0.5m;单元内部及周边20m范围内地面已全部采取无缝硬化或其他有效防渗措施,无裸露土壤的,可不布设表层土壤监测点,但应在监测报告中提供相应的影像记录并予以说明。

根据以上原则及要求,同时结合托尔专用化学品(镇江)有限公司地块内

的实际情况,本次自行监测共设置7个土壤监测点,其中5个为表层土壤监测点,2个为深层土壤监测点,具体土壤点位情况见表6-1。

序号	点位编号	点位坐标	钻探深度	备注
———— 单元 A	AT1	N32.159078°;E119.605400°	0.5m	一类单元
半儿 A	AT2	N32.159124°;E119.606459°	4.0m	—————————————————————————————————————
单元 B	BT1	N32.159765°;E119.605347°	0.5m	二类单元
単元 C	CT1	N32.159631°;E119.606689°	0.5m	二类单元
単元 D	DT1	N32.158920°;E119.606690°	0.5m	二类单元
———— 单元 E	ET1	N32.159195°;E119.607223°	0.5m	一类单元
平儿 E	ET2	N32.159083°;E119.607464°	4.5m	天半儿

表6-1 土壤监测点位设置情况表

6.1.2 地下水监测点

- (1)对照点:企业原则上应布设至少1个地下水对照点;对照点布设在企业用地地下水流向上游处,与污染物监测井设置在同一含水层,并应尽量保证不受自行监测企业生产过程影响;临近河流、湖泊和海洋等地下水流向可能发生季节性变化的区域可根据流向变化适当增加对照点数量。
- (2)监测井位置及数量:每个重点单元对应的地下水监测井不应少于1个。每个企业地下水监测井(含对照点)总数原则上不应少于3个,且尽量避免在同一直线上;应根据重点单元内重点场所或重点设施设备的数量及分布确定该单元对应地下水监测井的位置和数量,监测井应布设在污染物运移路径的下游方向,原则上井的位置和数量应能捕捉到该单元内所有重点场所或重点设施设备可能产生的地下水污染;地面已采取了符合HJ610和HJ964相关防渗技术要求的重点场所或重点设施设备可适当减少其所在单元内监测井数量,但不得少于1个监测井;企业或邻近区域内现有的地下水监测井,如果符合本标准及HJ164的筛选要求,可以作为地下水对照点或污染物监测井;监测井不宜变动,尽量保证地下水监测数据的连续性。
- (3) 采样深度: 自行监测原则上只调查潜水; 涉及地下取水的企业应考虑增加取水层监测; 采样深度参见HJ164对监测井取水位置的相关要求。

根据以上原则及要求,同时结合托尔专用化学品(镇江)有限公司地块内的实际情况,本次自行监测共设置7个地下水监测点(含1个对照点),具体地下水监测点的设置情况见表6-2。

 序号	点位编号	点位坐标	监测井深度	备注
/	DZS1	N32.158185°;E119.606475°	6.0m	对照点
単元 A	AS1	N32.159124°;E119.606459°	6.0m	一类单元
单元 B	BS1	N32.160015°;E119.606447°	6.0m	二类单元
単元 C	CS1	N32.159698°;E119.607116°	6.0m	二类单元
単元 D	DS1	N32.159371°;E119.607082°	6.0m	二类单元
单元 E	ES1	N32.159372°;E119.607637°	6.0m	一类单元

表6-2 地下水监测点位设置情况表

根据确定好的土壤和地下水监测点位,可知土壤和地下水自行监测点位布设见图6-1。

图 6-1 土壤和地下水点位布设

6.2 各点位布设原因

(1) AT1/AS1点位:点位位于单元A内,此区域为托尔专用化学品(镇江)有限公司生产区,主要进行杀菌剂、防腐剂、织物阻燃剂树脂、季铵盐类化合物的合成生产及液氯气化。生产过程过程可能会有污染物跑冒滴漏,从而

造成土壤和地下水产生污染。生产厂房东侧有污水收集井,深度约地下3米,属于隐蔽设施,因此识别为一类单元,设置1个表层土壤采样点、1个深层土壤采样点和1个地下水监测点。

- (2) BT1/BS1点位:点位位于单元B内,此区域为托尔专用化学品(镇江)有限公司储罐区,主要涉及氯甲烷、甲醇、异丙醇、甲醛、苄基氯、胺液、氯苯、氢氧化钠、氯丁烷、盐酸、邻氯苯腈、苯氧基乙醇等物质的存放,在储罐装卸过程可能会有污染物跑冒滴漏,从而造成土壤和地下水产生污染。此单元内不存在地下设施,因此识别为二类单元,设置1个表层土壤采样点和1个地下水监测点。
- (3) CT1/CS1点位:点位位于单元C内,此区域为托尔专用化学品(镇江)有限公司危废仓库,主要存放生产产生的危险废物,在危废转运过程中,可能会有污染物跑冒滴漏,从而造成土壤和地下水产生污染。此单元内不存在地下设施,因此识别为二类单元,设置1个表层土壤采样点和1个地下水监测点。
- (4) DT1/DS1点位:点位位于单元D内,此区域托尔专用化学品(镇江)有限公司仓库区,有甲类仓库、丙类仓库,存放生产所用的原辅料及成品,储运过程可能会有污染物跑冒滴漏,造成土壤和地下水产生污染。此单元内不存在地下设施,因此识别为二类单元,设置1个表层土壤采样点和1个地下水监测点。
- (5) ET1/ET2/ES1点位:点位位于单元E内,此区域为托尔专用化学品(镇江)有限公司污水站和应急池,其中废水调节池、废水排放池、初期雨水池/应急池为地下池,深度约地下4米,属于隐蔽设施,因此识别为一类单元,设置1个表层土壤采样点、1个深层土壤采样点和1个地下水监测点。

6.3 各点位监测指标及选取原因

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021),(1)初次监测原则上所有土壤监测点的监测指标至少应包括GB36600表1基本项目,地下水监测井的监测指标至少应包括GB/T14848表1常规指标(微生物指标、放射性指标除外)。企业内任何重点单元涉及上述范围外的关注污染物,应根据其土壤或地下水的污染特性,将其纳入企业内所有土壤或地下水监测点的初次监测指标。(2)后续监测按照重点单元确定监测指标,每个

重点单元对应的监测指标至少应包括:该重点单元对应的任一土壤监测点或地下水监测井在前期监测中曾超标的污染物,受地质背景等因素影响造成超标的指标可不监测:该重点单元涉及的所有关注污染物。

本次土壤和地下水自行监测土壤样品检测指标确定过程如下:

- (1)基本项目:《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中"表1建设用地土壤污染风险筛选值和管制值(基本项目)"45项指标和pH。
- (2) 其他特征污染物:根据前期识别结果,该地块还存在其他特征污染物,包括2-甲基-3(2H)-异噻唑啉酮、1,2-苯并异噻唑啉-3-酮、溴硝醇、2,2-二溴-3-氰基丙酰胺、硝酸铜、甲醛、溴酸钠、硝酸钠、氢氧化钠、盐酸、N-辛基异噻唑啉酮、敌草隆、多菌灵、二乙二醇、马来酸、丙烯酰胺、亚磷酸二甲酯、甲醇、甲醇钠、磷酸、碳酸胍、尿素、甲基磷酸、甲基磷酸二甲酯、双氰胺、四羟甲基氯化磷、三乙醇胺、氯化苄、碳十二烷胺、碳十四烷胺、碳十六烷胺、碳二十二烷胺、碳十八烷胺、氯甲烷、乙醇、异丙醇、丙三醇、硫化钠、氯苯类、邻氯苯腈、氯丁烷、氯气、氯化物、叔胺、苯氧基乙醇、pH值、石油烃(C10-C40)。

通过对地块涉及的特征污染物的理化性质及毒性分析可知:

- ①氢氧化钠、盐酸、磷酸主要会对周边土壤环境的酸碱性造成影响,因此 检测pH;
 - ②硝酸铜识别为铜,因此检测铜;
 - ③尿素、双氰胺水解生产氨氮,因此检测氨氮:
- ④通过查询污染物检测字典, 氯甲烷、氯苯、石油烃(C10-C40)土壤中有检测方法, 列入本次检测项目;
- ⑤通过查询污染物毒性字典,溴酸钠无毒性分值、硝酸钠硝酸钠、二乙二醇无毒性分值、马来酸毒性分值为10、甲醇钠无毒性分值、三乙醇胺毒性分值为10、氯化苄毒性分值为1000、乙醇无毒性分值、异丙醇无毒性分值、硫化钠无毒性分值、氯丁烷毒性分值为100、丙烯酰胺毒性分值为1000,氯气毒性分值为10,但在污染物检测字典中未查询到土壤检测方法,因此,暂不作检测;
- ⑥污染物毒性字典与污染物检测字典中均未查询到2-甲基-3(2H)-异噻唑啉酮、1,2-苯并异噻唑啉-3-酮、溴硝醇、2,2-二溴-3-氰基丙酰胺、N-辛基异噻唑啉

酮、亚磷酸二甲酯、碳酸胍、甲基磷酸、甲基磷酸二甲酯、四羟甲基氯化磷、碳十二烷胺、碳十四烷胺、碳十六烷胺、碳二十二烷胺、碳十八烷胺、丙三醇、邻氯苯腈、叔胺、苯氧基乙醇,因此,暂不作检测。

根据上述原则,确定本次自行监测土壤检测项目为45项+pH+氨氮+石油烃(C10-C40);

地下水检测项目为GB/T14848-2017表1中35项+氯苯+石油烃($C_{10}-C_{40}$)。

6.4 分析测试方法

土壤、地下水测试项目分析方法见下表。

表6-3 监测分析方法一览表

	表 6-3 监测分析方法一览表					
类别	检出项目	分析方法				
	色度	《生活饮用水标准检验方法感官性状和物理指标》 GB/T5750.4-2006				
	臭和味	《生活饮用水标准检验方法感官性状和物理指标》 GB/T5750.4-2006				
	浊度	《水质浊度的测定浊度计法》HJ1075-2019				
	肉眼可见物	《生活饮用水标准检验方法感官性状和物理指标》 GB/T5750.4-2006				
	pH值	《水质 pH 值的测定电极法》HJ1147-2020				
	总硬度	《水质钙、镁总量的测定 EDTA 滴定法》GB7477-1987				
	溶解性总固体	《生活饮用水标准检验方法感官性状和物理指标》 GB/T5750.4-2006				
	硫酸盐	《水质硫酸盐的测定铬酸钡分光光度法》HJ/T342-2007				
地下	氯化物	《水质氯化物的测定硝酸银滴定法》GB11896-1989				
水	铁	《水质 32 种金属元素的测定电感耦合等离子体发射光谱 法》HJ776-2015				
	锰	《水质 32 种金属元素的测定电感耦合等离子体发射光谱 法》HJ776-2015				
	铜	《水质 32 种金属元素的测定电感耦合等离子体发射光谱 法》HJ776-2015				
	锌	《水质 32 种金属元素的测定电感耦合等离子体发射光谱 法》HJ776-2015				
	铝	《水质 32 种金属元素的测定电感耦合等离子体发射光谱 法》HJ776-2015				
	钠	《水质 32 种金属元素的测定电感耦合等离子体发射光谱 法》HJ776-2015				
	镉	《水质 32 种金属元素的测定电感耦合等离子体发射光谱 法》HJ776-2015				

法》HJ776-2015 录《水质汞、砷、硒、铋和锑的测定原子荧光法》HJ692014 碑《水质汞、砷、硒、铋和锑的测定原子荧光法》HJ692014 硒《水质汞、砷、硒、铋和锑的测定原子荧光法》HJ692014 挥发酚 《水质挥发酚的测定 4-氨基安替比林分光光度法》HJ692009 阴离子表面	谱
神 《水质汞、砷、硒、铋和锑的测定原子荧光法》HJ69 2014 硒 《水质汞、砷、硒、铋和锑的测定原子荧光法》HJ69 2014 挥发酚 《水质挥发酚的测定 4-氨基安替比林分光光度法》HJ5 2009 阴离子表面 活性剂 GB/T7494-1987 高锰酸盐指 数 《水质高锰酸盐指数的测定》GB/T11892-1989 氨氮 《水质氨氮的测定 纳氏试剂分光光度法》HJ535-20 硫化物 《水质硫化物的测定亚甲基蓝分光光度法》HJ1226-20 亚硝酸盐氮 《水质可酸盐氮的测定分光光度法》HJ1226-20 亚硝酸盐氮 《水质可能量氮的测定分光光度法》HJ1246-20 总氰化物 《水质和酸盐氮的测定容量法和分光光度法》HJ/T346-20 总氰化物 《水质和化物的测定离子选择电极法》GB7484-1987 (地下水质检验方法淀粉比色法测定碘化物》DZ/T0064.56-1993 挥发性有机 物	1-
硒 《水质汞、砷、硒、铋和锑的测定原子荧光法》HJ69 2014 挥发酚 《水质挥发酚的测定 4-氨基安替比林分光光度法》HJ5 2009 阴离子表面 《水质阴离子表面活性剂的测定亚甲蓝分光光度法》 GB/T7494-1987 高锰酸盐指 数 《水质高锰酸盐指数的测定》 GB/T11892-1989 氨氮 《水质氨氮的测定 纳氏试剂分光光度法》HJ535-206 流化物 《水质硫化物的测定亚甲基蓝分光光度法》HJ1226-20 亚硝酸盐氮 《水质可酸盐氮的测定紫外分光光度法》HJ7346-206 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ/T346-206 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ/T346-206 总氰化物 《水质氰化物的测定离子选择电极法》GB7484-1987 《地下水质检验方法淀粉比色法测定碘化物》 DZ/T0064.56-1993 挥发性有机 《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法物 (水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法有机物的测定吹扫描集/气相色谱-质谱法有加物 (水质挥发性有机物的测定吹扫描集/气相色谱-质谱法有加物 (第四版国家环境保护总 2002年)4.3.2 气相色谱-质谱法(GC-MS)石油烃(C10-C40)的测定气相色谱法 (C10-C40)的测定气相色谱法 (C10-C40) 的测定气相色谱法 (C10-C40) 的现在 (水质可蒸 (水质可蒸 (水质可蒸 (C10-C40) 的测定气相色谱法 (C10-C40) 的现在 (水质可蒸 (水质可蒸 (C10-C40) 的现在 (水质可蒸 (C10-C40) 的测定 (水质可蒸 (C10-C40) 的现在 (水质可蒸 (水质可蒸 (C10-C40) 的测定 (风质 (C10-C40) 的测度 (风质 (C10-C40) 的测度 (风质 (C10-C40) 的测度 (风质 (C10-C40) 的测度 (C10-C40) 和 (C10-C4	1-
挥发酚 《水质挥发酚的测定 4-氨基安替比林分光光度法》HJ5 2009 阴离子表面 活性剂 《水质阴离子表面活性剂的测定亚甲蓝分光光度法》 GB/T7494-1987 高锰酸盐指 数 《水质氨氮的测定 纳氏试剂分光光度法》HJ535-206 硫化物 《水质硫化物的测定亚甲基蓝分光光度法》HJ1226-206 亚硝酸盐氮 《水质硫化物的测定亚甲基蓝分光光度法》HJ1226-206 亚硝酸盐氮 《水质碱化物的测定亚甲基蓝分光光度法》HJ7346-206 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ/T346-206 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ484-206 氟化物 《水质氰化物的测定离子选择电极法》GB7484-1987 《地下水质检验方法淀粉比色法测定碘化物》 DZ/T0064.56-1993 挥发性有机 《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法物 HJ639-2012 半挥发性有 机物 2002 年)4.3.2 气相色谱-质谱法(GC-MS)石油烃 (C10-C40)的测定气相色谱法(K水质可萃取性石油烃(C10-C40)的测定气相色谱法(HJ894-2017	1-
阴离子表面)3-
 (水质高锰酸盐指数的测定》GB/T11892-1989 氨氮 《水质氨氮的测定 纳氏试剂分光光度法》HJ535-206 硫化物 《水质硫化物的测定亚甲基蓝分光光度法》HJ1226-206 亚硝酸盐氮 《水质亚硝酸盐氮的测定分光光度法》HJ/T346-206 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ484-206 氟化物 《水质氟化物的测定离子选择电极法》GB7484-1987 碘化物 四人下水质检验方法淀粉比色法测定碘化物》DZ/T0064.56-1993 挥发性有机 将发性有机物的测定吹扫捕集/气相色谱-质谱法物 出了302年)4.3.2气相色谱-质谱法(GC-MS) 石油烃(C10-C40)的测定气相色谱法(C10-C40)的测定气相色谱法(C10-C40) (水质可萃取性石油烃(C10-C40)的测定气相色谱法(HJ894-2017) 	
硫化物 《水质硫化物的测定亚甲基蓝分光光度法》HJ1226-200 亚硝酸盐氮 《水质亚硝酸盐氮的测定分光光度法》GB7493-1987 硝酸盐氮 《水质硝酸盐氮的测定紫外分光光度法》HJ/T346-200 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ484-200 氟化物 《水质氟化物的测定离子选择电极法》GB7484-1987 (地下水质检验方法淀粉比色法测定碘化物》DZ/T0064.56-1993 挥发性有机 《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法物 HJ639-2012 《水和废水监测分析方法》(第四版国家环境保护总和物 2002年)4.3.2 气相色谱-质谱法(GC-MS)石油烃(C10-C40)的测定气相色谱法(GC-MS)	
亚硝酸盐氮 《水质亚硝酸盐氮的测定分光光度法》GB7493-1987。 《水质硝酸盐氮的测定紫外分光光度法》HJ/T346-2000 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ484-2000 氟化物 《水质氟化物的测定离子选择电极法》GB7484-1987 《地下水质检验方法淀粉比色法测定碘化物》DZ/T0064.56-1993 挥发性有机 《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法物 HJ639-2012 半挥发性有 《水和废水监测分析方法》(第四版国家环境保护总 2002 年)4.3.2 气相色谱-质谱法(GC-MS)石油烃 (C10-C40)的测定气相色谱法(GC10-C40)的测定气相色谱法(HJ894-2017	19
硝酸盐氮 《水质硝酸盐氮的测定紫外分光光度法》HJ/T346-200 总氰化物 《水质氰化物的测定容量法和分光光度法》HJ484-200 氟化物 《水质氟化物的测定离子选择电极法》GB7484-1987 碘化物 DZ/T0064.56-1993 挥发性有机 《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法物 HJ639-2012 半挥发性有 《水和废水监测分析方法》(第四版国家环境保护总 2002 年)4.3.2 气相色谱-质谱法(GC-MS) 石油烃 (C10-C40)的测定气相色谱法 HJ894-2017	21
总氰化物 《水质氰化物的测定容量法和分光光度法》HJ484-200 氟化物 《水质氟化物的测定离子选择电极法》GB7484-1987 碘化物	
氟化物 《水质氟化物的测定离子选择电极法》GB7484-1987 碘化物 《地下水质检验方法淀粉比色法测定碘化物》 DZ/T0064.56-1993 挥发性有机 《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法 物 HJ639-2012 半挥发性有 《水和废水监测分析方法》(第四版国家环境保护总 机物 2002年)4.3.2气相色谱-质谱法(GC-MS) 石油烃 (C10- C40) 《水质可萃取性石油烃(C10-C40)的测定气相色谱法 HJ894-2017	7
碘化物《地下水质检验方法淀粉比色法测定碘化物》 DZ/T0064.56-1993挥发性有机 物《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法 HJ639-2012半挥发性有 机物《水和废水监测分析方法》(第四版国家环境保护总 2002 年)4.3.2 气相色谱-质谱法(GC-MS)石油烃 (C10- C40)《水质可萃取性石油烃(C10-C40)的测定气相色谱法 HJ894-2017	—— 19
DZ/T0064.56-1993 挥发性有机 《水质挥发性有机物的测定吹扫捕集/气相色谱-质谱法	
物 HJ639-2012	
机物 2002年)4.3.2气相色谱-质谱法(GC-MS) 石油烃 (C10-C40) 《水质可萃取性石油烃(C10-C40)的测定气相色谱法 HJ894-2017	»
(C10- C40) 《水质可萃取性石油烃(C10-C40)的测定气相色谱法 HJ894-2017	<u>—</u> 司
pH 《土壤 pH 的测定电位法》HJ962-2018	»
石油烃 (C10- C40) 《土壤和沉积物石油烃(C10-C40)的测定气相色谱法 HJ1021-2019	»
神 《土壤质量总汞、总砷、总铅的测定原子荧光法第 2 分: 土壤中总砷的测定》GB/T22105.2-2008	邪
福 《土壤质量铅、镉的测定石墨炉原子吸收分光光度法 GB/T17141-1997	>
铅 《土壤质量铅、镉的测定石墨炉原子吸收分光光度法 GB/T17141-1997	·
镍 《土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸分光光度法》HJ491-2019	.收

Æ.	《土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收
铜	分光光度法》HJ491-2019
汞	《土壤质量总汞、总砷、总铅的测定原子荧光法第1部
<i>7</i> K	分: 土壤中总汞的测定》GB/T22105.1-2008
六价铬	《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分
八川相	光光度法》HJ1082-2019
氨氮	《土壤氨氮、亚硝酸盐氮、硝酸盐氮的测定氯化钾溶液提
安(炎(取-分光光度法》HJ634-2012
VOCs	《土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱-
VOCS	质谱法》HJ605-2011
SVOCs	《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》
SVOCS	HJ834-2017

6.5 评价方法

根据《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021)中相关要求以及企业所在区域环境管理要求,将土壤测定值按照《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值进行评价,氨氮测定值按照河北省地方标准《建设用地土壤污染风险筛选值》(DB13/T5216-2020)中第二类用地筛选值进行评价。

地下水检测结果按照《地下水质量标准》(GB/T14848-2017)中IV类水限值、《上海市建设用地地下水污染风险管控筛选值补充指标》(沪环土 [2020]62号文,附件5)第二类用地筛选值进行评价。

表6-4 《地下水质量标准》(GB/T14848-2017)

序	评价因子	A A	标准值			标准值 单位	
号	开川四丁	上 仏	I类	II类	III类	IV类	V类
1	色	度	5	5	15	25	>25
2	嗅和味	/	无	无	无	无	有
3	浑浊度	NTU	3	3	3	10	>10
4	肉眼可见 物	/	无	无	无	无	有
5	рН	无量纲	6.5~8.5			5.5~ 6.5, 8.5~9	<5.5, >9.0
6	总硬度	mg/L	150	300	450	650	>650
7	溶解性总 固体	mg/L	300	500	1000	2000	>2000
8	硫酸盐	mg/L	50	150	250	350	>350

9	氯化物	mg/L	50	150	250	350	>350
10	铁	mg/L	0.1	0.2	0.3	2.0	>2.0
11	锰	mg/L	0.05	0.05	0.1	1.5	>1.5
12	铜	mg/L	0.01	0.05	1.0	1.5	>1.5
13	锌	mg/L	0.05	0.5	1.00	5.00	>5.00
14	铝	mg/L	0.01	0.05	0.20	0.50	>0.50
15	挥发性酚 类	mg/L	0.001	0.001	0.002	0.01	>0.01
16	阴离子表 面活性剂	mg/L	不得检 出	0.1	0.3	0.3	>0.3
17	耗氧量	mg/L	1.0	2.0	3.0	10	>10.0
18	氨氮	mg/L	0.02	0.10	0.50	1.5	>1.5
19	硫化物	mg/L	0.005	0.01	0.02	0.10	>0.10
20	钠	mg/L	100	150	200	400	>400
21	亚硝酸盐	mg/L	0.01	0.10	1.00	4.80	>4.80
22	硝酸盐	mg/L	2.0	5.0	20	30	>30
23	氰化物	mg/L	0.001	0.01	0.05	0.1	>0.1
24	氟化物	mg/L	1.0	1.0	1.0	2.0	>2.0
25	碘化物	mg/L	0.04	0.04	0.08	0.50	>0.50
26	汞	mg/L	0.0001	0.0001	0.001	0.002	>0.002
27	砷	mg/L	0.001	0.001	0.01	0.05	>0.05
28	硒	mg/L	0.01	0.01	0.01	0.1	>0.1
29	镉	mg/L	0.0001	0.001	0.005	0.01	>0.01
30	铬 (六 价)	mg/L	0.005	0.01	0.05	0.1	>0.1
31	铅	mg/L	0.005	0.005	0.01	0.1	>0.1
32	三氯甲烷	μg/L	0.5	6	60	300	>300
33	四氯化碳	μg/L	0.5	0.5	2.0	50.0	>50.0
34	苯	μg/L	0.5	1.0	10.0	120	>120
35	甲苯	μg/L	0.5	140	700	1400	>1400
36	二氯甲烷	μg/L	1	2	20	500	>500

					I		
37	氯苯	μg/L	0.5	60.0	300	600	>600

表 6-5 上海市建设用地地下水污染风险管控筛选值补充指标

序号	评价因子	单位	第一类用地筛 选值	第二类用地筛 选值
1	石油烃(C ₁₀ - C ₄₀)	mg/L	0.6	1.2

表 6-6 GB36600-2018 土壤污染风险筛选值和管制值(单位: mg/kg)

 -	福口	第一类	5用地	第二多	烂用地	
号	项目	筛选值	管制值	筛选值	管制值	
		重金属和无机	」物			
1	砷	20	120	60	140	
2	镉	20	47	65	172	
3	铬 (六价)	3.0	30	5.7	78	
4	铜	2000	8000	18000	36000	
5	铅	400	800	800	2500	
6	汞	8	33	38	82	
7	镍	150	600	900	2000	
	挥发性有机物					
8	四氯化碳	0.9	9	2.8	36	
9	氯仿	0.3	5	0.9	10	
10	氯甲烷	12	21	37	120	
11	1,1-二氯乙烷	3	20	9	100	
12	1,2-二氯乙烷	0.52	6	5	21	
13	1,1-二氯乙烯	12	40	66	200	
14	顺-1,2-二氯乙烯	66	200	596	2000	
15	反-1,2-二氯乙烯	10	31	54	163	
16	二氯甲烷	94	300	616	2000	
17	1,2-二氯丙烷	1	5	5	47	
18	1,1,1,2-四氯乙烷	2.6	26	10	100	
19	1,1,2,2-四氯乙烷	1.6	14	6.8	50	

20	四氯乙烯	11	34	53	183
21	1,1,1-三氯乙烷	701	840	840	840
22	1,1,2-三氯乙烷	0.6	5	2.8	15
23	三氯乙烯	0.7	7	2.8	20
24	1,2,3-三氯丙烷	0.05	0.5	0.5	5
25	氯乙烯	0.12	1.2	0.43	4.3
26	苯	1	10	4	40
27	氯苯	68	200	270	1000
28	1,2-二氯苯	560	560	560	560
29	1,4-二氯苯	5.6	56	20	200
30	乙苯	7.2	72	28	280
31	苯乙烯	1290	1290	1290	1290
32	甲苯	1200	1200	1200	1200
33	间二甲苯+对二甲苯	163	500	570	570
34	邻二甲苯	222	640	640	640
		半挥发性有机	上物		
35	硝基苯	34	190	76	760
36	苯胺	92	211	260	663
37	2-氯酚	250	500	2256	4500
38	苯并[a]蒽	5.5	55	15	151
39	苯并[a]芘	0.55	5.5	1.5	15
40	苯并[b]荧蒽	5.5	55	15	151
41	苯并[k]荧蒽	55	550	151	1500
42	崫	490	4900	1293	12900
43	二苯并[a,h]蒽	0.55	5.5	1.5	15
44	茚并[1,2,3-cd]芘	5.5	55	15	151
45	萘	25	255	70	700
		其他			
46	石油烃(C ₁₀ -C ₄₀)	826	5000	4500	9000
		1	1	II.	1

表 6-7 DB13/T5216 建设用地土壤污染风险筛选值(单位: mg/kg)

序号	项目	筛选值		
17. 与	かり 一	第一类用地	第二类用地	
1	氨氮	960	1200	

6.6 监测频次

根据相关要求,自行监测的最低监测频次按照表6-8的要求执行。

表 6-8 自行监测的最低频次

监测对象		监测频次
土壤	表层土壤	年
	深层土壤	3年
₩ T ₩	一类单元	半年 (季度 a)
地下水	二类单元	年 (半年 a)

- 注1: 初次监测应包括所有监测对象。
- 注 2: 应选取每年中相对固定的时间段采样。地下水流向可能发生季节性变化的区域应选取每年中地下水流向不同的时间段分别采样。
- a适用于周边 1km 范围内存在地下水环境敏感区的企业。地下水环境敏感区定义参见 HJ610。

7样品采集、保存、流转与制备

7.1 现场采样位置、数量和深度

根据第6章节的相关分析,确定了监测点位布设方案。本次自行监测共设置7个土壤监测点(5个表层土壤监测点,2个深层土壤监测点),共设置6个地下水监测点(含1个对照点),土壤及地下水采样位置、数量和深度等汇总情况见表7-1。

————————————————————————————————————					
点位 _编号_	点位坐标	点位类 型	土壤类型	采样深度	样品数
AT1	N32.159078°;E119.605400°	土壤	表层土	0-0.5m	1个
AT2	N32.159124°;E119.606459°		柱状土	0-0.5m	3 个
				1.5-2.0m	
				3.5-4.0m	
BT1	N32.159765°;E119.605347°		表层土	0-0.5m	1个
CT1	N32.159631°;E119.606689°		表层土	0-0.5m	1个
DT1	N32.158920°;E119.606690°		表层土	0-0.5m	1个
ET1	N32.159195°;E119.607223°		表层土	0-0.5m	1个
ET2	N32.159083°;E119.607464°		柱状土	0-0.5m	3 个
				2-2.5m	
				4-4.5m	
DZS1	N32.158185°;E119.606475°	地下水	6.0m	根据 HJ164 要求进行	1个
_AS1	N32.159124°;E119.606459°		6.0m		1个
BS1	N32.160015°;E119.606447°		6.0m		1个
CS1	N32.159698°;E119.607116°		6.0m		1个
DS1	N32.159371°;E119.607082°		6.0m		1个
ES1	N32.159372°;E119.607637°		6.0m		1个

表7-1 土壤和地下水采样信息表

7.2 采样方法及程序

7.2.1 土壤

7.2.1.1 土孔钻探

本次钻探取样采用Geoprobe7822DT土壤地下水环境专用钻机,以直推贯入方式进行土孔钻探,可以实现弱扰动原状土采样,全程套管和无浆液钻进。土

孔钻探采用直径89mm套管和直径53mm取土管。

7.2.1.2 采样点地下情况探查

土孔钻探前探查现场采样点下部的地下罐槽、管线、集水井和检查井等地 下情况,若地下情况不明,拟选用手工钻探明地下情况。

7.2.1.3 钻孔深度

钻孔深度依据该地块布点计划执行,实际钻孔过程中进行适当调整。为防止潜水层底板被意外钻穿,从以下方面做好预防措施:

- (1) 开展调查前,调查单位根据收集的区域水文地质资料,掌握了潜水层和隔水层的分布、埋深、厚度和渗透性等信息,确定该地块钻孔安全深度较大,远大于计划钻探深度,造成潜水层底层被意外击穿的可能性较小。
- (2)钻探全程跟进套管,在接近潜水层底板时采用较小的单次钻深,并密切观察采出岩芯情况,若发现揭露隔水层,将立即停止钻探;若发现已钻穿隔水层,将立即提钻,将钻孔底部至隔水层投入足量止水材料进行封堵、压实,再完成建井。

7.2.1.4 土孔钻探技术要求

土孔钻探按照钻机架设、开孔、钻进、取样、封孔、点位复测、收集和处理废弃物的流程进行,本单位将按以下技术要求执行:

- (1)根据钻探设备实际需要清理钻探作业面,架设钻机,设立警示牌和警戒线。
 - (2) 开孔直径约3.25英寸, 开孔深度超过1.5m。
- (3)每次钻进深度为1.5m,岩芯采取率参照《重点行业企业用地调查样品采集保存和流转技术规定(试行)》要求执行。

本次土孔钻探采取无浆液钻进,全程套管跟进,可防止钻孔坍塌和上下层交叉污染;不同样品采集之间,将对钻头和钻杆进行清洗,清洗废水将集中收集并运送至废水治理区进行集中处理;钻进过程中揭露地下水时,将停钻等水,待水位稳定后,测量并记录初见水位及静止水位;土壤岩芯样品将按照揭露顺序依次放入岩芯箱,对土层变层位置进行标识。

(4)在钻孔过程中按要求填写土壤钻孔采样记录单,对采样点、钻进操作、岩芯箱、钻孔记录单等环节进行拍照记录。采样拍照要求:按照钻井东、南、西、北四个方向进行拍照记录,

照片能反映周边建构筑物、设施等情况,以点位编号+E、S、W、N分别作为东、南、西、北四个方向照片名称。

钻孔拍照要求:体现钻孔作业中开孔、套管跟进、钻杆更换和取土器使用、原状土样采集等环节操作要求,每个环节>1张照片。

岩芯箱拍照要求:体现整个钻孔土层的结构特征,重点突出土层的地质变化和污染特征,每个岩芯箱≥1张照片。

其他照片还包括钻孔照片(含钻孔编号和钻孔深度)、钻孔记录单照片等。

- (5)钻孔结束后,对于不需设立地下水采样井的钻孔立即封孔并清理恢复 作业区地面。
 - (6) 钻孔结束后, 使用RTK对钻孔的坐标进行复测, 记录坐标和高程。
- (7)钻孔过程中产生的污染土壤统一收集和处理,对废弃的一次性手套、口罩等个人防护用品按照一般固体废物处置要求进行收集并就近送至最近环卫站进行集中处置。

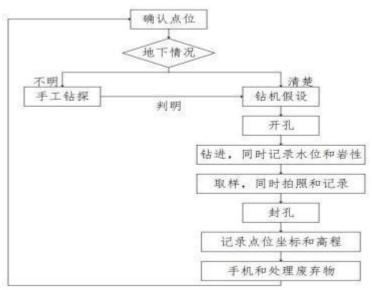


图 7-1 土孔钻探流程图

7.2.1.5 土壤样品采集

- (1) 土壤样品采集
- ①一般要求样品取出后,用剖管器切开柱状样,采样时首先通过观察采样管内土壤的颜色、气味,并借助快速检测设备(PID和XRF)判断需要采样的层位,注意保持土壤样品原状,要尽可能做到采样深度内样品量上下一致。应优先采集挥发性有机物(VOCs)样品,然后再采集SVOCs和重金属样品。

②土壤VOCs样品采集

用于检测VOCs的土壤样品单独采集,不对样品进行均质化处理,也不采集混合样。取土器将柱状的钻探岩芯取出后,具体流程如下:用不锈钢刮刀剔除约1cm~2cm表层土壤,在新的土壤切面处用非扰动采样器快速采集样品。针对检测VOCs的土壤样品,用非扰动采样器采集不少于5g原状岩芯的土壤样品推入加有10mL甲醇保护剂或搅拌子的40mL棕色样品瓶内,推入时将样品瓶略微倾斜,防止将保护剂溅出;棕色样品瓶共5份,其中两份添加10mL甲醇作为保护剂(采样量5g),两份添加搅拌子(采样量5g),一份测定含水率(采样量不少于100g)。同时每批次样品采集一份运输空白和一份全程序空白样品,采集的样品均要及时放入冷藏箱,在4°C以下避光保存。

- ③土壤重金属、SVOCs样品采集用于检测含水率、重金属、SVOCs等指标的土壤样品,用采样铲将土壤转移至广口样品瓶内并装满填实。其中,重金属土壤样品采集使用竹铲,非挥发性和半挥发性有机物(SVOCs)土壤样品采集使用不锈钢铲。采样过程应剔除石块等杂质,保持采样瓶口螺纹清洁以防止密封不严。土壤采样完成后,样品瓶用泡沫塑料袋包裹,随即放入现场带有冷冻蓝冰的样品箱内进行临时保存(4℃以下避光保存)。
- ④土壤装入样品瓶后,现场记录样品编码、采样日期和采样人员等信息, 将样品标签贴到样品瓶上,做好现场记录,将所有样品采集后及时放入低温保 温箱中,并及时送至实验室进行分析。

(2) 土壤样品采集拍照记录

土壤样品采集过程针对采样工具、采集位置、VOCs和SVOCs采样瓶土壤装样过程、样品瓶编号、盛放柱状样的岩芯箱、现场检测仪器使用等关键信息进行拍照记录,每个关键信息≥1张照片,以备质量控制。

(3) 其他

- ②采样前后对采样器进行除污和清洗,不同土壤样品采集更换手套,避免 交叉污染。
 - ③若单次取样量受场地土壤湿度、杂填土等影响压缩比小,在点位附近重

新钻孔,这个作为后续采样量不够的一个应急措施,保证样品以及平行样品的同时采集以及足够的样品量。

④采样过程填写土壤钻孔采样记录单。

7.2.1.6 土壤样品现场快速检测

本次监测使用光离子化检测仪(PID)对土壤VOCs进行快速检测,另外使用X射线荧光光谱仪(XRF)对土壤重金属进行快速检测,同时做好现场记录。

- (1)土壤样品采集后,将对样品进行快检,快速检测前将对快检仪器进行校准并填写"现场土壤快速检测仪器校正记录表"。根据地块污染情况和仪器灵敏度水平,设置PID、XRF等现场快速检测仪器的最低检测限和报警限,并将现场使用的便携式仪器的型号和最低检测限记录于"土壤钻孔采样记录单"。
- (2) 现场快速检测土壤中VOCs时,用采样铲在VOCs取样相同位置采集土壤置于聚乙烯自封袋中,自封袋中土壤样品体积应占1/2~2/3自封袋体积,取样后,自封袋应置于背光处,避免阳光直晒,取样后在30分钟内完成快速检测。检测时,将土样尽量揉碎,放置10分钟后摇晃或振荡自封袋约30秒,静置2分钟后将PID探头放入自封袋顶空1/2处,紧闭自封袋,记录最高读数。样品快测结果记录于"土壤钻孔采样记录单"。
- (3) 现场快速检测土壤中重金属含量时,用采样铲在重金属取样相同位置 采集土壤置于聚乙烯自封袋中,平整样品表面,使仪器探头可平整覆盖样品, 在XRF界面选取土壤测试方法,将仪器探头轻放于样品表面,扣动开始扳机开 始检测,快检结束后及时记录数据。
- (4) 将土壤样品现场快速检测结果记录,根据现场快速检测结果辅助筛选 送检土壤样品。

7.2.1.7 土壤样品的保存与流转

(1) 保存

挥发性有机物污染的土壤样品应采用密封性的采样瓶封装,样品应充满容器整个空间;含易分解有机物的待测定样品,可采取适当的封闭措施(如甲醇或水液封等方式保存于采样瓶中)。样品应置于4℃以下的样品保存箱中运输、保存,避免运输、保存过程中的挥发损失,送至实验室后应尽快分析测试。挥发性有机物浓度较高的样品装瓶后应密封在塑料袋中,避免交叉污染,应通过

运输空白样来控制运输和保存过程中交叉污染情况。

(2) 流转

样品需流转的,应在样品装运前必须逐件登记,样品标签和采样记录进行 核对,保存核对记录。

实验室样品接收人员应确认样品的保存条件和保存方式是否符合要求。收样实验室应清点核实样品数量,并在样品运送单上签字确认。

7.2.2 地下水

7.2.2.1 地下水采样井建设

地下水采样建设设计具体包括井管、滤水管、填料等。

(1) 井管设计

地下水采样井井管选择外径为63mm的U-PVC材质井管,井管连接采用螺纹进行连接,井深6.0m。

(2) 滤水管设计

初步设计滤水管上开口埋深位于地块地下水平均埋深(0.8m)以上20cm处,下开口埋深5.5m,下设50cm沉淀管。滤水管选用缝宽0.25mm的割缝筛管。

(3) 填料设计

地下水采样井填料从下至上依次为滤料层、止水层、回填层,各层填料要求如下:

- ①滤料层设置为沉淀管底部到滤水管顶部以上50cm。滤料层材料将选择1mm~2mm粒径的石英砂(免洗石英砂),避免影响地下水水质。
- ②止水层的填充高度为滤料层以上50cm至地面。选用球状膨润土分两段进行填充,第一段填充≥30cm的干膨润土,然后采用加水膨润土或膨润土浆继续填充至距离地面处。
 - ③回填层位于止水层之上至采样井顶部,选用膨润土作为回填材料。

(4) 地下水采样井建设

地下水采样井建设过程包括钻孔、下管、填充滤料、密封止水、井台构筑 (长期监测井需要)、成井洗井、封井等步骤,具体要求如下:

①钻孔

Geoprobe并设备安装Φ63mm的UPVC材料的井管,钻孔直径为83mm,然后 静置2h~3h并记录静止水位。

②下管

下管前将校正孔深,按先后次序将井管逐根丈量、排列、编号、试扣,确保下管深度和滤水管安装位置准确无误。井管慢速下放,中途遇阻时可适当上下提动和转动井管,必要时将井管提出,清除孔内障碍后再下管。下管完成后,将其扶正、固定,井管与钻孔轴心重合。

③滤料填充

选取1mm~2mm粒径的石英砂作为滤料,将石英砂注入管壁与孔壁中的环形空隙内,沿着井管四周均匀填充,避免从单一方位填入,一边填充一边晃动井管,防止滤料填充时形成架桥或卡锁现象。滤料填充过程将进行测量,确保滤料填充至设计高度。

④密封止水

密封止水将从滤料层往上填充,直至距离地面50cm。用膨润土球作为止水材料,每填充10cm向钻孔中均匀注入少量的清洁水,填充过程中将进行测量,确保止水材料填充至设计高度,静置待膨润土充分膨胀、水化和凝结,然后回填混凝土浆层。

⑤井台构筑

本地块属在产企业,根据在产企业地下水自行监测要求(1次/年),采样 井应建成长期监测井,井台构筑通常分为明显式和隐藏式井台,根据企业需求 确定井台的选择。

⑥成井洗井

地下水采样井建成24h后进行洗井,成井洗井达标出水体积应达到3倍以上 井水体积或水清砂净,浊度小于50NTU即可。本方案拟采用贝勒管进行洗井, 洗井时一井一管。

⑦成井记录单

成井后测量并记录地下水采样井点位坐标及管口高程,填写成井记录单。

7.2.2.2 地下水样品采集

(1) 采样前洗井

采样前洗井在成井洗井48h后开始,拟采用贝勒管进行洗井,洗井前对pH 计、溶解氧仪、电导率和氧化还原电位仪等检测仪器进行现场校正,校正结果 填入"地下水采样井洗井记录单"。重金属分析项目,当目测明显浑浊时,应 在现场用0.45μm滤膜过滤后采样。洗井操作流程如下:

- ①将塑料布平铺于井口周围,防止尼龙绳和贝勒管受到污染;
- ②将尼龙绳系紧的贝勒管缓慢放入井内,直至完全浸入水体;
- ③将贝勒管缓慢、匀速地提出井管;
- ④将贝勒管中的水样倒入水桶,以计算总的洗井体积;
- ⑤继续洗井,直至达到3倍井体积的水量;
- ⑥使用水质分析仪每10min监测一次水质指标, 直至稳定:
- ⑦若洗井水量达到5倍井体积后,水质指标仍不能达到稳定标准,可结束洗井,并根据具体情况确定是否采样;
- ⑧采样前洗井过程填写地下水采样井洗井记录单,采样前洗井过程中产生的废水统一收集处置。
 - (2) 地下水样品采集
- ①采样前测量并记录水位,若地下水水位变化小于10cm,则可以立即采样;若地下水水位变化超过10cm,应待地下水位再次稳定后采样,若地下水回补速度较慢,原则上应在洗井后2h内完成地下水采样。若洗井过程中发现水面有浮油类物质,需要在采样记录单里明确注明。采样深度在地下水水位线0.5m以下。
- ②地下水样品采集应先采集用于检测VOCs的水样,然后再采集用于检测其他水质指标的水样。对于未添加保护剂的样品瓶,地下水采样前需用待采集水样润洗2~3次。
- ③使用贝勒管进行地下水样品采集时,应缓慢沉降或提升贝勒管。取出后,通过调节贝勒管下端出水阀或低流量控制器,使水样沿瓶壁缓缓流入瓶中,直至在瓶口形成一向上弯月面,旋紧瓶盖,避免采样瓶中存在顶空和气泡。
- ④地下水装入样品瓶后,使用手持智能终端记录样品编码、采样日期和采样人员等信息,打印后贴到样品瓶上。
- ⑤地下水采集完成后,样品瓶应用泡沫塑料袋包裹,并立即放入现场装有冷冻蓝冰的样品箱内保存。

(3) 地下水平行样采集

送检的平行样占所送检地下水样品数量的比例为10%。

(4) 其他要求

- ①地下水采样过程中应做好人员安全和健康防护,佩戴安全帽和一次性的 个人防护用品(口罩、手套等),废弃的个人防护用品等垃圾应集中收集处 置。
- ②地下水样品采集拍照记录地下水样品采集过程应对洗井、装样(用于 VOCs、SVOCs、重金属和地下水水质监测的样品瓶)、以及采样过程中现场快速监测等环节进行拍照记录,每个环节至少1张照片,以备质量控制。
- ③使用非一次性的地下水采样设备,在采样前后需对采样设备进行清洗,清洗过程中产生的废水,应集中收集处置。地下水采样作业具体流程见图7-2。

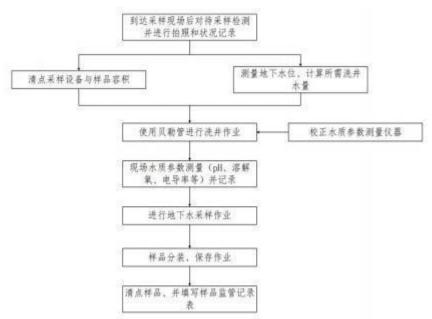


图7-2 地下水采样作业流程图

7.2.2.3 地下水样品的保存与流转

样品装箱前应与采样记录逐件核对,并对样品采取隔离防震措施,气温偏 高或偏低时应采取保温措施。

实验室样品接收人员应确认样品的保存条件和保存方式是否符合要求。收样实验室应清点核实样品数量,并在样品运送单上签字确认。

7.3 分析测试

监测样品由取得计量认证(CMA)资质,具备土壤和地下水分析测试能力的实验室分析测试。检测实验室应在实验室环境、人员、仪器设备和检测能力方面进行质量管理与质量监督以保证检测数据结果的准确可靠。

样品的监测分析方法应优先选用国家或行业标准分析方法; 尚无国家或行

业标准分析方法的监测项目,可选用行业统一分析方法或行业规范。

7.4 监测设施维护

- (1)监测井应设明显标识牌,井(孔)口应高出地面0.5~1.0m,井(孔)口安装盖(保护帽),孔口地面应采取防渗措施,井周围应有防护栏。
- (2)应指派专人对监测井的设施进行经常性维护,设施一经损坏,必须及时修复。
- (3)每两年测量监测井井深,当监测井内淤积物淤没滤水管或井内水深低于lm时,应及时清淤或换井。
- (4)每5年对监测井进行一次透水灵敏度试验,当向井内注人灌水段lm井管容积的水量,水位复原时间超过15min时,应进行洗井。
 - (5) 井口固定点标志和孔口保护帽等发生移位或损坏时,必须及时修复。

8 质量保证与质量控制

8.1 现场质量控制

现场质量保证措施主要是保证现场钻探、采样、样品保存过程满足项目实施方案的要求。本次调查现场采样过程采取的现场质量保证措施主要包括:

- (1) 现场开展工作前对所有现场检测仪器进行校准,包括pH计、电导率仪、溶 氧仪等。
- (2) 钻探采样过程中,在钻探开始前和不同采样点位钻探之间对钻探设备进行 清洗,对与土壤接触的其他采样工具重复利用前进行清洗,地下水监测井 采样前,每口监测井使用专用的一次性贝勒管进行扩井和洗井工作,防止 不同点位之间交叉污染。
- (3) 土壤采样人员均佩戴一次性丁腈手套进行土壤样品采样,每个土样取样前均更换新的手套;地下水采样时,每口监测井使用专用的一次性贝勒管进行地下水样品采集,使用防止样品之间交叉污染。
- (4) 采样中认真观察并记录了土壤的组成类型、密实程度、湿度和颜色,并特别注意了是否有异样的污渍或异味存在。
- (5) 样品采集后立即放置于装有蓄冷剂的保温样品箱中,保持在4℃以下的低温 环境,并采用适当的减震隔离措施。样品采集完毕后,由实验室采样人员 在样品保质时限内将装有样品的保温箱运至实验室进行样品检测分析。

8.2 实验室质量控制

8.2.1 样品接收

送入实验室的样品首先核对采样单、容器编号、包装情况、保存条件及有效期等,符合要求的样品方可开展分析测试。

8.2.2 样品保存

样品经接收到达实验室后,根据检测指标及样品有效期限要求对土壤和地下水样品进行低温保存及检测分析。

8.2.3 地下水样品精密度和准确度控制

凡样品均匀能做平行双样的分析项目,每批水样分析时均须做10%的平行 双样,样品数较小时,每批应至少做一份样品的平行双样。平行双样可采用密 码或明码两种方式,地下水监测平行双样允许偏差各污染物分析标准。 地下水水质监测中,采用标准物质和样品同步测试的方法作为准确度控制 手段,每批样品带一个已知浓度的标准物质或质控样品。如果实验室自行配制 质控样,应与国家标准物质比对,并且不得使用与绘制校准曲线相同的标准溶 液配制,必须另行配制。常规监测项目标准物质测试结果的允许误差见各污染 物分析标准。

当标准物质或质控样测试结果超出了各污染物分析标准规定的允许误差范围,表明分析过程存在系统误差,本批分析结果准确度失控,应找出失控原因并加以排除后才能再行分析并报出结果。

对于受污染的或样品性质复杂的地下水,也可采用测定加标回收率作为准确度控制手段。地下水各监测项目加标回收率允许范围各污染物分析标准。

8.2.4 土壤样品精密度和准确度控制

测定率:每批样品每个项目分析时均须做20%平行样品;当5个样品以下时,平行样不少于1个。

测定方式:由分析者自行编入的明码平行样,或由质控员在采样现场或实验室编入的密码平行样。

合格要求:平行双样测定结果的误差在允许误差范围之内者为合格。允许误差范围需符合HJ/T166-2004表13-1要求。对未列出允许误差的方法,当样品的均匀性和稳定性较好时,参考HJ/T166-2004表13-2的规定。当平行双样测定合格率低于95%时,除对当批样品重新测定外再增加样品数10%~20%的平行样,直至平行双样测定合格率大于95%。

使用标准物质或质控样品:例行分析中,每批要带测质控平行双样,在测定的精密度合格的前提下,质控样测定值必须落在质控样保证值(在95%的置信水平)范围之内,否则本批结果无效,需重新分析测定。

加标回收率的测定: 当选测的项目无标准物质或质控样品时,可用加标回收实验来检查测定准确度。

加标率:在一批试样中,随机抽取10%~20%试样进行加标回收测定。样品数不足10个时,适当增加加标比率。每批同类型试样中,加标试样不应小于1个。

加标量:加标量视被测组分含量而定,含量高的加入被测组分含量的0.5~1.0倍,含量低的加2~3倍,但加标后被测组分的总量不得超出方法的测定上

限。加标浓度宜高,体积应小,不应超过原试样体积的1%,否则需进行体积校正。

合格要求:加标回收率应在加标回收率允许范围之内。加标回收率允许范围需符合HJ/T166-2004表13-2要求。当加标回收合格率小于70%时,对不合格者重新进行回收率的测定,并另增加10%~20%的试样作加标回收率测定,直至总合格率大于或等于70%以上。

8.3 原始记录和监测报告的审核

地下水监测原始记录和监测报告执行三级审核制。第一级为采样或分析人员之间的相互校对,第二级为科室(或组)负责人的校核,第三级为技术负责人(或授权签字人)的审核签发。

第一级主要校对原始记录的完整性和规范性, 仪器设备、分析方法的适用性和有效性, 测试数据和计算结果的准确性, 校对人员应在原始记录上签名。

第二级主要校核监测报告和原始记录的一致性,报告内容完整性、数据准确性和结论正确性。

第三级审核监测报告是否经过了校核,报告内容的完整性和符合性,监测结果的合理性和结论的正确性。

第二、第三级校核、审核后,均应在监测报告上签名。

8.4 安全防护和应急处置计划

8.4.1 安全防护计划

在现场采样调查过程中,采样单位需遵守《中华人民共和国安全生产法》等国家和地方有关法律法规及管理规定,遵守《企业安全生产标准化基本规范》(GB/T3000-2016)等企业安全生产及设备使用相关技术规范,做好采样调查过程中的安全隐患防范。

为确保安全,现场工作期间应严格落实以下安全保障与风险防控措施

- (1) 采样前
- ①钻探点位需得到地块负责人认可。
- ②所有人员进场前需经过安全培训,严格执行现场设备操作规范,按要求使用个人防护装备,如安全帽、口罩、手套、安全防护鞋等。
 - (2) 采样过程

- ①设置施工区警戒线:在现场调查操作区周边,设立明显的标识牌及安全警示线,钻孔作业时不准无关人员、车辆靠近,避免发生危险。
- ②关注设备工况:作业中严格执行设备使用说明和操作规程,作业过程时刻观察设备各结构组件的状态,及时发现设备故障、损坏,发现故障立即停止作业,对设备故障原因现场排查、修复。钻探与取样应相互配合,注意钻探采样时的作业位置,掌握好采样时机,机长观察工作状态若有问题及时更正指导或停止施工。
- ③谨慎施工关注钻进异常情况:严格按照布点采样方案进行,钻井施工中需谨慎,时刻注意土层变化,不得冒进,防止事故发生;吊装搬动钻具、采样管时,应谨慎施工,严格杜绝物件掉落、设备倾倒等安全事故;密切关注钻进过程中的异常情况,如异响、遇异常物突发异味等现象,应立刻停止钻进,排除异常情况后方可继续钻进。
- ④施工期人员防护:全程规范佩戴安全帽,接触样品时全程佩戴一次性丁腈手套,避免皮肤直接接触样品,现场使用保护剂时,应佩戴手套,查验瓶内的保护剂是否泄漏。

(3) 采样后撒场

- ①采样作业完成后,按照钻井操作规程安全有序拆除设备,妥善收集相关 采样配件,与企业负责人沟通后,在采样负责人指挥下有序撒场,若企业对采 样后施工区域恢复有特殊要求,应完成相关恢复要求后撒场。
- ②应及时清理现场,钻探过程中产生的废土、废水及其他废弃物应妥善处置,不随意丢弃。

(4) 其他相关注意事项

- ①现场工作人员在离开场地前不得脱卸防护设备,避免直接接触场地内的 土壤和水,不得在场地内饮食、吸烟。每天采样工作结束离开现场后,脱卸防护设备应妥善保存,不宜带回生活区。
- ②针对场地内可能存在的危险废物,施工方应落实人员防护应急措施,对 施工人员进行针对性的安全教育,提供安全意识和自救水平。
- ③现场采样时,设置安全专员,同一采样点应有两人以上进行采样,相互 监护,防止中毒昏迷及掉入坑洞等意外事故发生。
 - ④手上、脸上、脖子上有皮肤破损的人员不得进入现场。现场需配备应急

水冲淋装置,若有毒有害溶液溅到皮肤上,要立刻用大量的清水冲洗。

⑤在易燃易爆区域需配备灭火器,严禁明火,采样设备应加防静电措施。 采样过后现场遗留的沟、坑等处应有防护装置或明显标志,在调查结束后应及 时封填。场地潮湿,需要用电时,不得架设裸导线,严禁乱拉乱接,所有的临 时和移动电器应设置有效的漏电保护开关。

8.4.2 应急处置计划

为了积极应对项目实施过程中可能发生的安全事故及突发性的紧急情况, 特此制定相应的应急预案并于以上情况发生时迅速采取有效措施保证项目实施 人员及管理人员的人身安全,控制事故扩大,并尽量将对周围环境的影响降到 最低。

8.4.2.1 可能发生的事故分析

本项目实施过程中可能发生的安全事故与紧急情况主要有:

- (1)调查过程中接触到的污染土壤及地下水中可能含有多种有毒物质,容易造成在场人员中毒事故。
- (2)项目实施过程中可能发生的公众围观、附近居民投诉等社会突发事件等。

8.4.2.2 组织机构

成立事故应急救援指挥部,由项目负责人任总指挥,技术负责人任副总指挥。成立相关工作组,包括抢救组、安全保障组、物资供应组、医疗善后组、事故调查组、抢险抢修组。设紧急联络员,负责紧急事物的联络工作。

8.4.2.3 响应原则

- (1) 紧急事故发生后,发现人或单位立即报警。
- (2) 在报警后,应立即组织自救队伍,按事先制定的应急方案开展自救,若事态情况严重,难以控制和处理,应立即在自救的同时向专业救援队伍求救,并密切配合救援队伍。
- (3) 疏通事故发生现场遒路,保证救援工作顺利进行,疏散人群到安全地带。
- (4) 在急救过程中,遇到威胁人身安全情况时,应首先确保人身安全,迅速组织脱离危险区域或场所以后,再采取急救措施。
 - (5) 紧急事故处理结束,指挥部组织相关人员填写记录,并召集相关人员

研究防止事故再次发生的对策。

8.4.2.4 处置方案

(1) 有害物质泄漏等事故应急处置方案

在发生有害物质泄漏等灾害事故后,现场工作人员立即向现场负责人报告,现场负责人立即向指挥部报告,总指挥组织人员进行初期救援,通过安全疏散通道迅速撒离危险区。疏散人员时要为抢险人员运送抢险物资、消防车、救护车让道。

(2) 社会事件应急处置方案

项目实施过程中若发生公众围观、附近居民投诉并在工地聚集等突发事件,项目部应立即停止施工,并向附近居民解释工程情况、实施的意义、出示场区内及周边空气监测记录和监测报告,解释这个浓度值会造成的伤害,告知居民相应的预防措施。如附近居民发生了情绪激动的情况,项目组应建立临时接待处,做好居民情绪安抚工作,并配合当地的公安部门做好解释和宣传工作,在未做好附近居民安抚工作的情况下,项目不得施工。

8.4.2.5 保障设置

(1) 资金保障

项目设置安全事故及突发情况所需的资金,根据应急指挥部的指及时指出响应款项,保证环境应急事件的需要。

(2) 装备保障

备便携式VOCs测定仪等监测装备,配备干粉灭火器安全装备,以及适宜的防毒面具、防护面罩、防护服、耐酸碱胶手套、水靴、急救箱、交通疏导指挥棒、消毒药品、反光背心、应急灯、警戒线、随时可调用的车辆等应急抢险装备。

(3) 通讯保障

参加应急救援处置的所有成员必须配备移动通讯工具并处于开机状态,确保本预案启动时指挥部、现场人员、相关行业主管部门间的联络畅通。

(4) 医疗保障

项目现场配有专用车辆旦发生人员中毒、受伤等突发事件将第一时间送往附近医院进行救治。

同时,为了防止蚊虫叮咬、人员昏厥等情况的发生,现场工作组配置凉

茶、驱蚊水、凉棚、急救药品等防护与医疗救援物资。

8.4.2.6 后期处理

紧急事故发生后,指挥部应组织事故调查小组立即查找、分析事故原因, 24小时以内写出《紧急事故处理报告》,并备案,针对导致发生事故的原因, 研究制定防范措施,经主管领导审批后予以实施。

8.4.2.7 日常培训与防范

项目实施前,组织应急培训,提高应急救援人员应急救援技能及应急避险知识,并安排一次应急救援演练,验证各小组准备情况,对于发现的问题,及时解决,并写改正情况的书面报告,报主管领导审批。

9 检测结果分析

9.1 土壤检测结果分析

各点位检测结果统计如下表9.1-1。完整的实验室检测报告见(2626)新环检第(2126)号。

托尔专用化学品(镇江)有限公司所在地块土壤点位pH值呈弱碱性;六价铬、总汞、总砷、铅、铜、镉、镍等7项指标所有点位均有检出,检测结果与筛选值进行比较,所有样品指标均明显低于筛选值;部分有机物检出,检测结果与筛选值进行比较,挥发性和半挥发性有机物样品指标均明显低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)规定的第二类建设用地筛选值筛选值标准;石油烃(C10-C40)除ET1外所有点位均检出,浓度值均低于筛选值。本次调查地块内土壤表层样品中各监测因子检出含量均低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)规定的第二类建设用地筛选值,氨氮低于DB13/T5216建设用地土壤污染风险筛选值。

表 9.1-1 各点位土壤监测结果统计表

监测因子	ZT0	AT1	AT2	BT1	CT1	DT1	ET1	ET2	单位
pН	6.81	7	10.07	9.96	7.95	7.89	7.81	7.86	无量纲
氨氮	1.28	1.75	3.6	3.51	1.69	1.22	1.14	1.23	mg/kg
1,1,1,2-四 氯乙烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,1,1-三氯 乙烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,1,2,2-四 氯乙烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,1,2-三氯 乙烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,1-二氯乙 烯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,1-二氯乙 烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,2,3-三氯 丙烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,2-二氯丙 烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,2-二氯乙 烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,2-二氯苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
1,4-二氯苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
三氯乙烯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg

		I	T		I		T	I	
三氯甲烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
乙苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
二氯甲烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
反-1,2-二氯 乙烯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
四氯乙烯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
四氯化碳	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
氯乙烯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
氯甲烷	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
氯苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
甲苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
苯乙烯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
邻二甲苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
间/对二甲 苯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
顺-1,2-二氯 乙烯	ND	ND	ND	ND	ND	ND	ND	ND	μg/kg
崫	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
2-氯苯酚	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
二苯并 (ah)蒽	0.1	ND	mg/kg						
硝基苯	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg
苯并 (a) 芘	ND	ND	ND	ND	ND	ND	ND	ND	mg/kg

苯并 (a) 蒽	ND	mg/kg							
苯并(b) 荧蒽	ND	mg/kg							
苯并(k) 荧蒽	ND	mg/kg							
苯胺	0.07	ND	0.07	0.09	0.08	0.07	0.08	ND	mg/kg
茚并									
(1,2,3-	0.1	ND	mg/kg						
cd) 芘									
萘	ND	mg/kg							
石油烃 (C ₁₀ -C ₄₀)	24	6	7	7	8	10	ND	7	mg/kg
六价铬	ND	mg/kg							
总汞	0.291	0.174	0.165	0.083	0.099	0.094	0.112	0.136	mg/kg
总砷	6.9	7.04	8.88	4.96	6.03	6.03	6.67	5.86	mg/kg
铅	9.6	8.6	11	46.4	10.5	3.6	11.2	8.3	mg/kg
铜	25	18	7	17	14	25	26	23	mg/kg
镉	0.2	0.07	0.02	0.08	0.05	0.06	0.11	0.06	mg/kg
镍	38	48	31	30	35	59	42	40	mg/kg

9.2 地下水检测结果分析

地下水各点位检测结果见表9.2-1,完整的实验室检测报告见(2025)新环 检第(2626)号和(2025)新环检第(3240)号。

托尔专用化学品(镇江)有限公司所在地块地下水BS1、ES1点位的氨氮;DZS1、BS1、DS1点位的碘化物;所有点位下半年的浊度;上半年BS1、DS1、ES1点位、下半年DZS1、BS1、CS1、DS1点位的锰超出《地下水质量标准》(GB/T14848-2017)IV类标准。其余各因子均达到《地下水质量标准》(GB/T14848-2017)IV类标准。石油烃(C10-C40)达到《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》"附件5上海市建设用地地下水污染风险管控筛选值补充指标"。

表 9.2-1 各点位上半年和下半年地下水监测结果统计表

水 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
监测因子	DZS1	AS1	BS1	CS1	DS1	ES1	DZS1	AS1	BS1	CS1	DS1	ES1	单位
监测时间			202	25.5					202	25.9			平位
氰化物	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/L
石油烃 (C ₁₀ - C ₄₀)	ND	0.07	0.02	0.03	ND	0.02	ND	0.1	0.01	0.01	0.01	ND	mg/L
硫化物	0.003	0.003	ND	0.003	0.003	0.003	ND	ND	ND	ND	ND	ND	mg/L
氨氮	0.244	0.538	0.412	0.768	0.185	1.02	0.348	0.51	1.77	0.145	0.623	1.79	mg/L
耗氧量	1.6	4.2	4	2.6	2.8	1.8	1.5	2.1	2.5	1.2	1.4	2.5	mg/L
亚硝酸盐氮	0.004	0.032	0.005	0.15	0.007	0.267	0.004	0.032	0.003	ND	ND	0.329	mg/L
氟化物	0.34	0.36	0.53	0.33	0.34	0.33	0.36	0.34	0.38	0.32	0.32	0.4	mg/L
氯化物	40	51.5	32.6	82	32.6	79.5	25.7	62.3	21.6	17.3	17.5	96.4	mg/L
硝酸盐氮	0.42	1.73	0.46	3.92	0.73	3.24	0.36	1.22	0.27	0.11	0.41	0.43	mg/L
硫酸盐	58	53.5	23.8	129	45.3	125	53.6	43.9	11.4	50.6	33.2	104	mg/L
溶解性总固体	591	460	728	792	673	769	625	537	715	532	579	677	mg/L
色度	5	5	5	5	5	5	5	10	20	10	10	5	度
总硬度	321	241	479	298	403	337	276	269	473	325	355	237	mg/L
肉眼可见物	无	无	无	无	无	无	无	无	无	无	无	无	无量纲
臭和味	无	无	无	无	无	无	无	无	无	无	无	无	无量纲
碘化物	0.475	ND	0.448	0.031	0.361	0.042	0.925	0.034	0.72	0.223	0.7	0.028	mg/L
六价铬	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/L
挥发酚	ND	0.0004	0.0003	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/L
浊度	9.2	9.7	9.8	9.7	9.8	10	210	<mark>154</mark>	<mark>281</mark>	51	<mark>119</mark>	<mark>24</mark>	NTU
pН	7.4	7.1	7.3	7.5	7.5	7.4	8.5	8.3	8.5	8.4	8.2	8.3	无量纲

ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	μg/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	μg/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	μg/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	μg/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	μg/L
0.08	ND	ND	0.04	0.11	0.08	0.12	0.28	0.11	0.11	0.11	0.09	μg/L
ND	2.1	0.7	ND	ND	ND	ND	1.5	5.5	0.4	1.1	2.9	μg/L
0.6	0.5	0.6	0.6	0.9	0.6	ND	ND	ND	ND	ND	3.6	μg/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	0.053	ND	ND	mg/L
26.4	28.6	29.4	86.5	29.7	81.5	26.1	13.4	25.3	19.4	12.4	110	mg/L
ND	ND	0.12	0.04	0.02	0.03	0.16	0.1	0.16	0.06	0.04	0.06	mg/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	μg/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	mg/L
ND	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	mg/L
0.014	0.011	0.005	0.012	ND	0.012	0.025	0.025	0.013	0.004	0.01	0.04	mg/L
1.02	0.198	<mark>4.78</mark>	0.508	<mark>4.78</mark>	1.58	2.63	1.06	<mark>6.14</mark>	2.23	3.93	0.902	mg/L
1.46	0.781	1.15	0.717	0.187	0.434	0.296	ND	ND	0.077	ND	2.62	μg/L
	ND ND ND ND 0.08 ND 0.6 ND 26.4 ND ND ND ND ND 1.02	ND ND ND ND ND ND ND ND 0.08 ND ND 2.1 0.6 0.5 ND ND 26.4 28.6 ND ND ND ND ND ND ND ND ND ND 0.014 0.011 1.02 0.198	ND ND ND ND ND ND ND ND ND ND ND ND 0.08 ND ND ND ND ND ND ND ND ND ND ND 26.4 28.6 29.4 ND ND ND 0.014 0.011 0.005 1.02 0.198 4.78	ND ND ND 0.08 ND ND 0.04 ND 2.1 0.7 ND 0.6 0.5 0.6 0.6 ND ND ND ND 26.4 28.6 29.4 86.5 ND ND ND ND 0.014 0.011 0.005 0.012 1.02 0.198 4.78 0.508	ND ND ND ND 0.08 ND ND ND ND ND ND ND ND ND 0.6 0.5 0.6 0.6 0.9 ND ND ND ND ND ND ND ND ND ND <	ND ND ND ND ND 0.08 ND ND ND ND ND ND 2.1 0.7 ND ND ND 0.6 0.5 0.6 0.6 0.9 0.6 ND ND ND ND ND 26.4 28.6 29.4 86.5 29.7 81.5 ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.08 ND ND <td>ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.08 ND ND ND ND ND ND ND ND 0.08 ND ND<!--</td--><td>ND ND ND<</td><td>ND ND ND<</td><td>ND ND ND<</td><td>ND ND ND<</td></td>	ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.08 ND ND ND ND ND ND ND ND 0.08 ND ND </td <td>ND ND ND<</td> <td>ND ND ND<</td> <td>ND ND ND<</td> <td>ND ND ND<</td>	ND ND<	ND ND<	ND ND<	ND ND<

10 结论与建议

10.1 结论

依据调查方案,本次地块现状监测土壤点位8个,其中ZT0为土壤对照点, 采样深度0-0.5 m,地下水监测井6口,其中DZS1为对照井。

托尔专用化学品(镇江)有限公司所在地块土壤各监测点位检测结果显示,pH值呈弱碱性; 六价铬、总汞、总砷、铅、铜、镉、镍等7项指标所有点位均有检出,检测结果与筛选值进行比较,所有样品指标均明显低于筛选值; 部分有机物检出,检测结果与筛选值进行比较,挥发性和半挥发性有机物样品指标均明显低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)规定的第二类建设用地筛选值筛选值标准; 石油烃(C₁₀-C₄₀)除ET1外所有点位均检出,浓度值均低于筛选值。本次调查地块内土壤表层样品中各监测因子检出含量均低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)规定的第二类建设用地筛选值,氨氮低于DB13/T5216建设用地土壤污染风险筛选值。

托尔专用化学品(镇江)有限公司所在地块地下水BS1、ES1点位的氨氮;DZS1、BS1、DS1点位的碘化物;所有点位下半年的浊度;上半年BS1、DS1、ES1点位、下半年DZS1、BS1、CS1、DS1点位的锰超出《地下水质量标准》(GB/T14848-2017)IV类标准。其余各因子均达到《地下水质量标准》(GB/T14848-2017)IV类标准。石油烃(C10-C40)达到《上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)》"附件5上海市建设用地地下水污染风险管控筛选值补充指标"。

10.2 建议

- (1) 企业在生产经营过程中,加强环境质量管理,避免"跑冒滴漏"现象发生,杜绝污染,定期对厂区各装置区域、装卸区等区域进行污染排查,如发现防渗层存在开裂,应及时对防渗层区域进行修补,防止污染物进一步扩散和下渗;
- (2)对于存在有隐蔽性重点设施设备的区域(如废水处理站、污水收集池等),应做好防雨、防流失和导流措施,加强定期检查,防止污染物随水流进

入土壤和地下水造成污染;

- (3) 企业制定地块土壤及地下水常态化跟踪监测方案,定期对该地块开展 土壤和地下水监测工作,及时掌握全厂区土壤和地下水环境质量状况和变化趋 势;
 - (4) 地块内地下水不可直接作为饮用水使用;
- (5)做好生产应急预案,加强生产及罐区管理,开展应急演练,增强事故应急处置能力。

附件

附件1重点监测单元清单

表 B.1 重点监测单元清单

企业	-	· · · · · · · · · · · · · · · · · · · ·	(镇江) 有限公	司	所属行业		C2662 ±	 - 项化学品	制诰
名称					// / - - - - - - - -			7/10 1 HH	
填写 日期		2023.03.12		填报人员		联系方式			
序号	单元内需 要监测的 重点场所/ 设施/设备 名称	功能(即该重 点场所/设施/ 设备设计的生 产活动)	涉及有毒有 害物质清单	关注污染物	设施坐标 (中心点坐标)	是否为隐 蔽性设施	单元类别 (一类/ 二类)	该单元对	寸应的监测点位编号 及坐标
单元 A	生产厂房	杀菌剂、防腐剂、织物阻燃剂树脂、季铵 剂数脂、季铵 盐类化合物的 合成生产	pH、氨 氮、石油烃 (C10- C40)	pH、氨氮、 石油烃 (C10-C40)	N32.159217°; E119.605868°	是	一类	土壤	AT1N32.159078°; E119.605400° AT2N32.159124°; E119.606459°
	液氯车间	液氯气化	(40)		N32.159582°; E119.606180°	否		地下水	AS1N32.159124°; E119.606459°
		氯甲烷、甲 醇、异丙醇、	氯甲烷、甲 醇、异丙					土壤	BT1N32.159765°; E119.605347°
単元 B	储罐区	甲醛、苄基 氯、胺液、氯 苯、氢氧化 钠、氯丁烷、 盐酸、邻氯苯 腈、苯氧基乙	醇、苄基 氯、叔 氯苯、氢氧 化钠、氯丁 烷、盐酸、 邻氯苯腈、	氯甲烷、氯 苯	N32.159947°; E119.605716°	否	二类	地下水	BS1N32.160015°; E119.606447°

托尔专用化学品(镇江)有限公司土壤和地下水自行监测报告(2025年度)

		醇存放	苯氧基乙醇						
* - 0		厂区危废存放	VOCs、 SVOCs、石	VOCs、 SVOCs、石	N32.159947°;	-	N/.	土壤	CT1N32.159631°; E119.606689°
单元 C	危废仓库		油烃 (C10- 油烃 (C10-C40)	油烃	E119.605716°	否	二类	地下水	CS1N32.159698°; E119.607116°
V -	甲类仓库	原辅料存放	pH、氨 氮、	pH、氨氮、	N32.159267°; E119.606867°	否		土壤	DT1N32.158920°; E119.606690°
单元 D	丙类仓库	产品存放	石油烃 (C10- C40)	石油烃 (C10-C40)	N32.158581°; E119.607081°	否	二类	地下水	DS1N32.159371°; E119.607082°
単元 E	污水站	厂区废水处理	pH 值、氯 苯类、全盐 量、总磷、	pH、氯苯、	N32.159330°; E119.607380°	是,地下 4m	一类	土壤	ET1N32.159195°; E119.607223° ET2N32.159083°; E119.607464°
	初期雨水 池 /应急池	初期雨水、消 防废水存放	悬浮物、化	氨氮	N32.159189°; E119.607377°	是,地下 4m		地下水	ES1N32.159372°; E119.607637°

附件2实验室样品检测

控制编号: XQJC-63001-15

检测报告

(2025) 新环检第 (2626) 号

项目名称 土壤、地下水检测

镇江新区环境监测站有限公司 二零二<u>五</u>鲜<u></u>,前

检测报告说明

尊敬的客户:

为保障您的合法权益,请您认真阅读下面的检测报告说明,如有任何疑问, 敬请垂询,我公司将竭诚为您服务。

- 1、如果您对本报告的检测结果有异议,您可于收到报告之日起十日内以单位公 函形式向本公司提起申述,逾期我们将不再受理。
- 2、检测结果高于方法检出限时将直接为您报出检测结果;如果低于方法检出限时以"ND"表示,同时我们会为您注明其方法检出限。
- 3、由于环境样品具有极强的空间性和时间性,本检测结果仅代表检测时委托方提供的工况条件下项目测值,对此请您理解。
- 4、本公司出具的报告,对且仅对您委托样品所列项目的检测结果负责。
- 5、在您收到报告时, 若您发现本报告没有本公司业务专用章、骑缝章, 签发者签字, 本报告无效, 您有权拒绝接收。
- 6、如果您想复制、摘用报告,请您先联系我们出具书面批准。否则对本检测报告进行复制、摘用或篡改引起的法律纠纷我公司不予承担。
- 7、如果您想将本公司的检测结果,用于广告及商业宣传,请您先联系我公司出 县书面批准,否则我们有权追究法律责任。
- 8、本报告我们会出具两份,一份正本给委托客户,一份副本自留存档,存档期限六年。在此我们将承诺,对您的检测结果我们会严格保密。

机构通讯资料:

联系地址:江苏省镇江新区港南路345号中瑞生态产业园创新中心7号楼5楼

邮政编码: 212132

联系电话 (Tel): 0511-85995701 传真 (Fax): 0511-85995566

电子邮件 (Email): 504161691@qq.com

检测内容

共 24 页 第 1 页

委托单位	托尔专用化学品 (镇江) 有限公司	地址	镇江新区金港大道 182 号
联系人/电话	陆安洲 18952866268	邮编	212000
采样日期	2025年03月11日、 05月09日	分析日期	2025年03月12日-17日、2025年05月09日-21日
检测目的		委托检测	
检测内容	三氯乙烷、1,1-二氯乙烯、1 烷、1,2-二氯乙烷、1,2-二氯乙烷、1,2-二氯烯、三氯甲烷、乙苯、二氯二氯乙烯、四氯乙烯、四氯乙烷、氯苯、甲苯、石油烃(C芘、苯并(a)蒽、苯并(b)芡芘、茶、邻二甲苯、铅、钼地下水: pH、三氯甲烷、亚挥发酚、氟化物、氨氮、氯总固体、甲苯、石油烃(C1酸盐、碘化物、耗氧量、肉	1-二氯 C.	乙烷、1,1,2,2-四氯乙烷、1,1,2- 、1,2,3-三氯丙烷、1,2-二氯丙 、五苯、2-氯苯酚、pH、三氯乙 并(ah)蒽、六价铬、反-1,2- 总砷、氨氮、氯乙烯、氯甲 基苯、苯、苯乙烯、苯并(a))荧蒽、苯胺、茚并(1,2,3-cd) 间/对二甲苯、顺-1,2-二氯乙 六价铬、四氯化碳、总硬度、 氰化物、汞、浊度、溶解性 硒、硝酸盐氮、硫化物、硫 臭和味、色度、苯、钠、铁、 洗涤剂(阴离子表面活性剂)
检测依据	蔥、苯并(b) 荧蔥、苯并和沉积物 半挥发性有机物的苯胺:土壤和沉积物苯胺的剂照 HJ 834-2017) 1,1,1,2-四氯乙烷、1,1,1-二氯乙烷氯乙烷、1,2-二氯乙烷氯乙烷、1,2-二氯乙烯、氯苯、甲苯、苯、苯乙烯、烯:土壤和沉积物 挥发性有HJ 605-2011 pH:土壤 pH 值的测定 电化	(k) 荧蒽、 內测定 气相。 则定气相色的 人乙烷、1,1,2,3 二氯苯、三氯 二氯苯乙烯苯乙烯 和物的测定 立法 HJ 962-2	普-质谱法 XQJC-33018-19(参 2-四氯乙烷、1,1,2-三氯乙烷、 九丙烷、1,2-二氯丙烷、1,2-二 、乙烯、三氯甲烷、乙苯、二 四氯化碳、氯乙烯、氯甲烷、 间/对二甲苯、顺-1,2-二氯乙 吹扫捕集/气相色谱-质谱法

检测内容

共 24 页 第 2 页

光度法 HJ 1082-2019

总汞:土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分:土壤中总汞的测定 GB/T 22105.1-2008

总砷:土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分:土壤中总砷的测定 GB/T 22105.2-2008

氨氮:土壤 氨氮、亚硝酸盐氮、硝酸盐氮 氯化钾溶液提取-分光光度 法 HJ 634-2012

石油烃(C_{10} - C_{40}):土壤和沉积物 石油烃(C_{10} - C_{40})的测定 气相色谱法 HJ 1021-2019

铅、镉:土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法 GB/T 17141-1997

铜、镍:土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019

pH:水质 pH值的测定 电极法HJ 1147-2020

三氯甲烷、四氯化碳、氯苯、甲苯、苯:水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 639-2012

亚硝酸盐氮:水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-87 六价铬:地下水质分析方法 第 17 部分: 总铬和六价铬量的测定 二苯碳酰二肼分光光度法 DZ/T 0064.17-2021

总硬度:水质 钙和镁总量的测定 EDTA 滴定法 GB/T 7477-87 挥发酚:水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 503-2009 氟化物:水质 氟化物的测定 离子选择电极法 GB/T 7484-1987 氨氮:水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009 氯化物:水质 无机阴离子的测定 离子色谱法 HJ/T 84-2016 氰化物:地下水质分析方法 第 52 部分: 氰化物的测定 吡啶-吡唑啉酮分光光度法 DZ/T 0064.52-2021

汞、砷、硒:水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014 浊度:水质 浊度的测定 浊度计法 HJ 1075-2019

溶解性总固体:重量法(A)《水和废水监测分析方法》(第四版增补版)国家环境保护总局 (2002) 3.1.7.2

石油烃 $(C_{10}$ - $C_{40})$:水质 可萃取性石油烃 $(C_{10}$ - $C_{40})$ 的测定 气相色谱法 HJ 894-2017

硝酸盐氮:水质 硝酸盐氮的测定 紫外分光光度法 (试行)HJ/T 346-2007

硫化物:水质 硫化物的测定 亚甲基蓝分光光度法 HJ 1226-2021 硫酸盐:水质 无机阴离子的测定 离子色谱法 HJ 84-2016

~ 对二出

检测内容

共 24 页 第 3 页

碘化物:地下水质分析方法 第 56 部分: 碘化物的测定 淀粉分光光度 法 DZ/T 0064.56-2021

耗氧量:地下水质分析方法 第 68 部分: 耗氧量的测定 酸性高锰酸钾 滴定法 DZ/T 0064.68-2021

肉眼可见物:生活饮用水标准检验方法 感官性状和物理指标 7.1 直接观察法 GB/T 5750.4-2023

臭和味:生活饮用水标准检验方法 感官性状和物理指标 6.1 嗅气和尝味法 GB/T 5750.4-2023

色度:水质 色度的测定 铂-钴标准比色法 GB/T 11903-1989

钠、铁、铜、铝、锌、锰:水质 32 种元素的测定 电感耦合等离子体 发射光谱法 HJ 776-2015

铅、镉:石墨炉原子吸收法测定镉、铜、铅(B)《水和废水监测分析方法》(第四版增补版) 国家环保总局(2002) 3.4.7.4

阴离子合成洗涤剂 (阴离子表面活性剂):生活饮用水标准检验方法 感官性状和物理指标 亚甲蓝分光光度法 GB/T 5750.4-2023

解释与说明

结论

见检测结果。

编制 何晓玲

审核压库

签发 /

签发日期 2025年08月29日

共 24 页 第 4 页

检测类别: 地下水

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果								
		DEM202503070												
		01-DS1-1-02		氰化物	mg/L	ND								
		DEM202503070		石油烃		VIID								
		01-DS1-1-03		$(C_{10}-C_{40})$	mg/L	ND								
		DEM202503070			/т	/L ND /L 0.003 /L 0.244 /L 1.6 /L 0.004 /L 0.34 /L 0.42 /L 58.0 /L 591 5 /L 321								
		01-DS1-1-04		硫化物	mg/L	0.003								
		DEM202503070										氨氮	mg/L	0.244
		01-DS1-1-05		耗氧量	mg/L	1.6								
				亚硝酸盐氮	mg/L	0.004								
		DEM202503070		氟化物	mg/L	0.34								
		01-DS1-1-06			氯化物	mg/L	40.0							
		01-251-1-00		硝酸盐氮	mg/L	0.42								
				硫酸盐	mg/L	58.0								
		DEM202503070		溶解性总固体	mg/L	591								
				01-DS1-1-07	_	10.71								
		DEM202503070		色度	度	5								
		01-DS1-1-08			m.v.o.—	9677								
		DEM202503070		总硬度	mg/L	321								
		01-DS1-1-09	₩ # ₩ 電 T	台間 エロル	r E ha	r dag ar g V								
DZS1	2025.05.09		微黄微浑无 异味	肉眼可见物	无任何! 为地下2									
	Г	DEM202503070	7T 'A	臭和味		ACCUPATION STREET, NO. OF STREET								
		01-DS1-1-10												
		01-251-1-10		大作水		12: 50 IA 9: 111								
		DEM202503070												
		01-DS1-1-11		碘化物	mg/L	0.475								
		DEM202503070		7 26 26	100	*****								
		01-DS1-1-12		六价铬	mg/L	ND								
		DEM202503070		1年 中 本人	/T	NIIN								
		01-DS1-1-13		挥发酚	mg/L	ND								
		DEM202503070		浊度	NTU	0.2								
		01-DS1-1-14		4.00	NIO	9.2								
		DEM202503070		рН	无量纲	74								
		01-DS1-1-15			11 10000000000 2000	65790,0000								
] [] [] [] [1		三氯甲烷	μg/L	ND			
		DEM202503070		四氯化碳	μg/L	ND								
		01-DS1-1-16		甲苯	μg/L	ND								
		Action (Supremental Math. Math. St.)		苯	μg/L	ND								
				氯苯	μg/L	ND								

共 24 页 第 5 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEL 1202502070		汞	μg/L	0.08
		DEM202503070		<i>6</i> 0	μg/L	ND
		01-DS1-1-17		硒	μg/L	0.6
				阴离子合成洗		
		DEM202503070		涤剂(阴离子	mg/L	ND
		01-DS1-1-18		表面活性剂)	Ü	
				钠	mg/L	26.4
				铁	mg/L	ND
				铅	μg/L	ND
		DEM202503070		铜	mg/L	ND
		01-DS1-1-19		铝	mg/L	ND
				锌	mg/L	0.014
				锰	mg/L	1.02
				镉	μg/L	1.46
		DEM202503070		氰化物	ma/I	ND
		01-DS2-1-02		前(1042)	mg/L	ND
		DEM202503070		石油烃	mg/L	0.07
		01-DS2-1-03		$(C_{10}-C_{40})$	mg L	0.07
		DEM202503070		硫化物	mg/I	0.003
		01-DS2-1-04				0.003
		DEM202503070		魚魚	mg/L	0.538
		01-DS2-1-05		耗氧量	mg/L	4.2
				亚硝酸盐氮	mg/L	0.032
		DEM202503070		氟化物	mg/L	0.36
		01-DS2-1-06		氯化物	mg/L	51.5
		01-1052-1-00		硝酸盐氮	mg/L	1.73
			微黄微浑无	硫酸盐	mg/L	53.5
AS1	2025.05.09	DEM202503070 01-DS2-1-07	异味	溶解性总固体	mg/L	460
		DEM202503070 01-DS2-1-08		色度	度	5
		DEM202503070 01-DS2-1-09		总硬度	mg/L	241
				肉眼可见物	无量纲	无肉眼可见物
		DEM202503070 01-DS2-1-10		臭和味	-	无任何臭,此 为地保对人体 法确保对人体 无害,故无法 尝味。无/0
		DEM202503070 01-DS2-1-11		碘化物	mg/L	ND

共 24 页 第 6 页

ライディ

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEM202503070	7	六价铬	ma/I	ND
		01-DS2-1-12		ハ 川 治	mg/L	ND
		DEM202503070		挥发酚	mg/L	0.0004
		01-DS2-1-13		4千人即	mg/L	0.0004
		DEM202503070		浊度	NTU	9.7
		01-DS2-1-14		(五)文	NIO	5.1
		DEM202503070		рН	无量纲	7.1
		01-DS2-1-15		•	70至111	
				三氯甲烷	μg/L	ND
		DEM202503070		四氯化碳	μg/L	ND
		01-DS2-1-16		甲苯	μg/L	ND
				苯	μg/L	ND
				氯苯	μg/L	ND
		DEM202503070			μg/L	ND
		01-DS2-1-17		种	μg/L	2.1
				码	μg/L	0.5
		DEM202503070		阴离子合成洗	10000	N 908/003
		01-DS2-1-18		涤剂 (阴离子	mg/L	ND
				表面活性剂)		
				纳	mg/L	28.6
				铁	mg/L	ND
				铅	μg/L	ND
		DEM202503070		铜	mg/L	ND
		01-DS2-1-19		铝	mg/L	ND
				锌	mg/L	0.011
				锰	mg/L	0.198
				镉	μg/L	0.781
		DEM202503070		氰化物	mg/L	ND
		01-DS3-1-02		we 31 1 m	100 may 2007	
		DEM202503070		石油烃	mg/L	0.02
		01-DS3-1-03		(C ₁₀ -C ₄₀)		
		DEM202503070		硫化物	mg/L	ND
		01-DS3-1-04	微黄微浑无	10000 811 MS		204-020-0277
BS1	2025.05.09	DEM202503070	异味	康康	mg/L	0.412
		01-DS3-1-05	near tiffii	耗氧量	mg/L	4.0
				亚硝酸盐氮	mg/L	0.005
		DEM202503070		氟化物	mg/L	0.53
		DEM202503070 01-DS3-1-06		氯化物	mg/L	32.6
				硝酸盐氮	mg/L	0.46
				硫酸盐	mg/L	23.8

共 24 页 第 7 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
木件地点	木仟日朔		件的性状	*	半位	極例結末
		DEM202503070 01-DS3-1-07		溶解性总固体	mg/L	728
		DEM202503070 01-DS3-1-08		色度	度	5
		DEM202503070				
		01-DS3-1-09		总硬度	mg/L	479
		01-D33-1-09		肉眼可见物	无景级	无肉眼可见物
				73 46 3 7049	70里刊	无任何臭,此
		DEM202503070				为地下水, 无
		01-DS3-1-10		臭和味		法确保对人体
		01 203 1 10		X4-4		无害,故无法
						尝味。无/0
		DEM202503070		VES 2004 6000		
		01-DS3-1-11		碘化物	mg/L	0.448
		DEM202503070		. go 1012		
		01-DS3-1-12		六价铬	mg/L	ND
		DEM202503070		F. W		
		01-DS3-1-13		挥发酚	mg/L	0.0003
		DEM202503070		.1. 3		
		01-DS3-1-14		浊度	NTU	9.8
		DEM202503070		***	T 8 413	
		01-DS3-1-15		pН	无量纲	7.3
				三氯甲烷	μg/L	ND
		DEX (202502070		四氯化碳	μg/L	ND
		DEM202503070 01-DS3-1-16		甲苯	μg/L	ND
		01-D33-1-10		苯	μg/L	ND
				氯苯	μg/L	ND
		DEM202503070		汞	μg/L	ND
		01-DS3-1-17		砷	μg/L	0.7
		01-D33-1-17		硒	μg/L	0.6
		DEM202503070		阴离子合成洗		
		01-DS3-1-18		涤剂(阴离子	mg/L	ND
		01-D33-1-16		表面活性剂)		
				钠	mg/L	29.4
				铁	mg/L	0.12
				铅	μg/L	ND
		DEM202503070		铜	mg/L	ND
		01-DS3-1-19		铝	mg/L	ND
				锌	mg/L	0.005
				锰	mg/L	4.78
				镉	μg/L	1.15

共 24 页 第 8 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
	,	DEM202503070		冬九山	/*) III)
		01-DS4-1-02		氰化物	mg/L	ND
		DEM202503070		石油烃	/T	0.03
		01-DS4-1-03		$(C_{10}-C_{40})$	mg/L	0.03
		DEM202503070		硫化物	ma/I	0.003
		01-DS4-1-04		100 10 10	mg/L	0.003
		DEM202503070		氨氮	mg/L	0.768
		01-DS4-1-05		耗氧量	mg/L	2.6
				亚硝酸盐氮	mg/L	0.150
		DEM202503070		氟化物	mg/L	0.33
		01-DS4-1-06		氯化物	mg/L	82.0
		01 DD 1 1 00		硝酸盐氮	mg/L	3.92
				硫酸盐	mg/L	129
		DEM202503070		溶解性总固体	mg/L	792
		01-DS4-1-07			mg E	1,72
		DEM202503070		色度	度	5
		01-DS4-1-08		0,2		
		DEM202503070		总硬度	mg/L	298
		01-DS4-1-09				*
CS1	2025.05.09		微黄微浑无	肉眼可见物	九重纲	无肉眼可见物 五人(1)
CSI	2023.03.09	DEL 1202502070	异味			无任何臭,此
		DEM202503070		臭和味		为地下水, 无 法确保对人体
		01-DS4-1-10		吴和 怀		左端床 八八本 无害,故无法
						尝味。无/0
		DEM202503070		碘化物		
		01-DS4-1-11			mg/L	0.031
		DEM202503070		- 12.12		
		01-DS4-1-12		六价铬	mg/L	ND
		DEM202503070		-002 A-000000		
		01-DS4-1-13		挥发酚	mg/L	ND
		DEM202503070				
		01-DS4-1-14		浊度	NTU	9.7
		DEM202503070		рН	无量纲	7.5
		01-DS4-1-15			nemonality 16	and MOV
				三氯甲烷	μg/L	ND
		DEM202503070		四氯化碳	μg/L	ND
		01-DS4-1-16		甲苯	μg/L	ND
		3132077110		苯	μg/L	ND
				氯苯	μg/L	ND

共 24 页 第 9 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DD1 (202505-5-		汞	μg/L	0.04
		DEM202503070		硒	μg/L	ND
		01-DS4-1-17		硒	μg/L	0.6
				阴离子合成洗		
		DEM202503070		涤剂(阴离子	mg/L	ND
		01-DS4-1-18		表面活性剂)	J	
				钠	mg/L	86.5
				铁	mg/L	0.04
				铅	μg/L	ND
		DEM202503070		铜	mg/L	ND
		01-DS4-1-19		铝	mg/L	ND
				锌	mg/L	0.012
				锰	mg/L	0.508
				镉	μg/L	0.717
		DEM202503070		氰化物	ma/I	ND
		01-DS5-1-02		701042	mg/L	ND
		DEM202503070		石油烃	mg/L	ND
		01-DS5-1-03		$(C_{10}-C_{40})$	mg L	ND
		DEM202503070		硫化物	mg/L	0.003
		01-DS5-1-04		491C1C101	mg L	0.003
		DEM202503070		魚魚	mg/L	0.185
		01-DS5-1-05		耗氧量	mg/L	2.8
				亚硝酸盐氮	mg/L	0.007
		DEM202503070		氟化物	mg/L	0.34
		01-DS5-1-06		氯化物	mg/L	32.6
		01-D33-1-00		硝酸盐氮	mg/L	0.73
			微黄微浑无	硫酸盐	mg/L	45.3
DS1	2025.05.09	DEM202503070 01-DS5-1-07	异味	溶解性总固体	mg/L	673
		DEM202503070		色度	度	5
		01-DS5-1-08 DEM202503070				
		01-DS5-1-09		总硬度	mg/L	403
				肉眼可见物	无量纲	无肉眼可见物
						无任何臭,此
		DEM202503070				为地下水, 无
		01-DS5-1-10		臭和味		法确保对人体
						无害, 故无法
						尝味。无/0
		DEM202503070		碘化物	mc/T	0.261
		01-DS5-1-11		ク	mg/L	0.361

共 24 页 第 10 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEM202503070		六价铬	ma/I	NID
		01-DS5-1-12		277月1谷	mg/L	ND
		DEM202503070		挥发酚	mg/L	ND
		01-DS5-1-13		4千人即	mg L	ND
		DEM202503070		浊度	NTU	9.8
		01-DS5-1-14		73/2	1110	2.0
		DEM202503070		рН	无量纲	7.5
		01-DS5-1-15			10 10 10 10	
				三氯甲烷	μg/L	ND
		DEM202503070		四氯化碳	μg/L	ND
		01-DS5-1-16		甲苯	μg/L	ND
				苯	μg/L	ND
				氯苯	μg/L	ND
		DEM202503070		汞	μg/L	0.11
		01-DS5-1-17		砷	μg/L	ND
				硒	μg/L	0.9
		DEM202503070		阴离子合成洗	-	
		01-DS5-1-18		涤剂(阴离子	mg/L	ND
				表面活性剂)	/ T	20.7
					mg/L	29.7 0.02
				铅	mg/L	25 20 20
		DEM202503070		铜	μg/L mg/L	ND ND
		01-DS5-1-19		铝		ND
		01-D33-1-19		锌	mg/L mg/L	ND
				锰		4.78
				辐	mg/L	0.187
		DEM202503070			μg/L	0.167
		01-DS6-1-02		氰化物	mg/L	ND
		DEM202503070		石油烃	/T	0.02
		01-DS6-1-03		$(C_{10}-C_{40})$	mg/L	0.02
		DEM202503070		3-6-65		
		01-DS6-1-04		硫化物	mg/L	0.003
ES1	2025.05.09	DEM202503070	微黄微浑无		mg/L	1.02
		01-DS6-1-05	异味	耗氧量	mg/L	1.8
				亚硝酸盐氮	mg/L	0.267
				氟化物	mg/L	0.207
		DEM202503070 01-DS6-1-06		氯化物	mg/L	79.5
				硝酸盐氮	mg/L	3.24
				硫酸盐	mg/L	125
				プロロス、辺上	mg/L	140

共 24 页 第 11 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEM202503070		冷忽地芳园丛	/T	770
		01-DS6-1-07		溶解性总固体	mg/L	769
		DEM202503070		色度	度	5
		01-DS6-1-08		口及	及	3
		DEM202503070		总硬度	mg/L	337
		01-DS6-1-09		42-20 25-244884		
				肉眼可见物	无量纲	无肉眼可见物
						无任何臭,此
		DEM202503070		6.7		为地下水, 无
		01-DS6-1-10		臭和味		法确保对人体
						无害,故无法
		DEL (202502070				尝味。无/0
		DEM202503070		碘化物	mg/L	0.042
		01-DS6-1-11				
		DEM202503070 01-DS6-1-12		六价铬	mg/L	ND
		DEM202503070				
		01-DS6-1-13		挥发酚	mg/L	ND
		DEM202503070				
		01-DS6-1-14		浊度	NTU	10
		DEM202503070			10°01 (Santa) (Sa	
		01-DS6-1-15		pН	无量纲	7.4
				三氯甲烷	μg/L	ND
				四氯化碳	μg/L	ND
		DEM202503070		甲苯	μg/L	ND
		01-DS6-1-16		苯	μg/L	ND
				氯苯	μg/L	ND
		DEN 4202502050		汞	μg/L	0.08
		DEM202503070		砷	μg/L	ND
		01-DS6-1-17		硒	μg/L	0.6
		DEM202503070		阴离子合成洗		
		01-DS6-1-18		涤剂(阴离子	mg/L	ND
		01-1-00-1-10		表面活性剂)		
				钠	mg/L	81.5
				铁	mg/L	0.03
				铅	μg/L	ND
		DEM202503070		铜	mg/L	ND
		01-DS6-1-19		铝	mg/L	ND
				锌	mg/L	0.012
				锰	mg/L	1.58
				镉	μg/L	0.434

共 24 页 第 12 页

检测类别: 土壤

点位名称	点位编号	采样深度	样品性状	点位坐标
ZT0 (厂外对照点)	T1	0.2m	褐色无味干粘土	E:119°36'24" N:32°9'25"
AT1	Т2	0.2m	褐色无味干粘土	E:119°36'19" N:32°9'33"
AT2	Т3	0.2m	褐色无味干粘土	E:119°36'23" N:32°9'33"
BT1	Т4	0.2m	褐色无味干粘土	E:119°36'19" N:32°9'35"
CT1	Т5	0.2m	褐色无味干粘土	E:119°36'24" N:32°9'35"
DT1	Т6	0.2m	褐色无味干粘土	E:119°36'24" N:32°9'32"
ET1	Т7	0.2m	褐色无味干粘土	E:119°36'26" N:32°9'33"
ET2	Т8	0.2m	褐色无味干粘土	E:119°36'27" N:32°9'33"

采样地点	采样日期	样品编号	检测项目	单位	检测结果
		DEM202503070	pН	无量纲	6.81
		01-T1-1-01	氨氮	mg/kg	1.28
			1,1,1,2-四氯乙烷	μg/kg	ND
			1,1,1-三氯乙烷	μg/kg	ND
			1,1,2,2-四氯乙烷	μg/kg	ND
			1,1,2-三氯乙烷	μg/kg	ND
			1,1-二氯乙烯	μg/kg	ND
			1,1-二氯乙烷	μg/kg	ND
			1,2,3-三氯丙烷	μg/kg	ND
		1,2-二氯丙烷	1,2-二氯丙烷	μg/kg	ND
			1,2-二氯乙烷	μg/kg	ND
ZTO(厂外对照	2025.03.11		1,2-二氯苯	μg/kg	ND
点)			1,4-二氯苯	μg/kg	ND
765.2			三氯乙烯	μg/kg	ND
		01-11-1-02	三氯甲烷	μg/kg	ND
			乙苯	μg/kg	ND
			二氯甲烷	μg/kg	ND
			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
			四氯化碳	μg/kg	ND
			氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND
			苯	μg/kg	ND

共 24 页 第 13 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
		10	苯乙烯	μg/kg	ND
			邻二甲苯	μg/kg	ND
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
			薜	mg/kg	ND
			2-氯苯酚	mg/kg	ND
			二苯并(ah)蒽	mg/kg	0.1
			硝基苯	mg/kg	ND
		DEM202503070	苯并(a) 芘	mg/kg	ND
		01-T1-1-03	苯并(a) 蒽	mg/kg	ND
		01-11-1-03	苯并(b) 荧蒽	mg/kg	ND
			苯并(k)荧蒽	mg/kg	ND
			苯胺	mg/kg	0.07
		j	茚并(1,2,3-cd)芘	mg/kg	0.1
			萘	mg/kg	ND
		DEM202503070 01-T1-1-04	石油烃(C ₁₀ -C ₄₀)	mg/kg	24
			六价铬	mg/kg	ND
			总汞	mg/kg	0.291
		DEM202503070	总砷	mg/kg	6.90
		01-T1-1-05	铅	mg/kg	9.6
		01-11-1-05	铜	mg/kg	25
			镉	mg/kg	0.20
			镍	mg/kg	38
		DEM202503070	pН	无量纲	7.00
		01-T2-1-01	桑 夤	mg/kg	1.75
			1,1,1,2-四氯乙烷	μg/kg	ND
			1,1,1-三氯乙烷	μg/kg	ND
			1,1,2,2-四氯乙烷	μg/kg	ND
			1,1,2-三氯乙烷	μg/kg	ND
			1,1-二氯乙烯	μg/kg	ND
			1,1-二氯乙烷	μg/kg	ND
AT1	2025.03.11	DEM202503070	1,2,3-三氯丙烷	μg/kg	ND
		01-T2-1-02	1,2-二氯丙烷	μg/kg	ND
		0.12102	1,2-二氯乙烷	μg/kg	ND
			1,2-二氯苯	μg/kg	ND
			1,4-二氯苯	μg/kg	ND
			三氯乙烯	μg/kg	ND
			三氯甲烷	μg/kg	ND
			乙苯	μg/kg	ND
			二氯甲烷	μg/kg	ND

共 24 页 第 14 页

- Wy.

采样地点	采样日期	样品编号	检测项目	单位	检测结果
*			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
			四氯化碳	μg/kg	ND
			氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND
			苯	μg/kg	ND
			苯乙烯	μg/kg	ND
			邻二甲苯	μg/kg	ND
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
			薜	mg/kg	ND
			2-氯苯酚	mg/kg	ND
			二苯并(ah)蒽	mg/kg	ND
			硝基苯	mg/kg	ND
		DEL (202502070	苯并(a) 芘	mg/kg	ND
		DEM202503070 01-T2-1-03	苯并(a) 蒽	mg/kg	ND
		01-12-1-03	苯并(b)荧蒽	mg/kg	ND
			苯并(k)荧蒽	mg/kg	ND
			苯胺	mg/kg	ND
			茚并(1,2,3-cd)芘	mg/kg	ND
			萘	mg/kg	ND
		DEM202503070 01-T2-1-04	石油烃(C ₁₀ -C ₄₀)	mg/kg	6
			六价铬	mg/kg	ND
			总汞	mg/kg	0.174
		DEM202503070	总砷	mg/kg	7.04
		01-T2-1-05	铅	mg/kg	8.6
		01-12-1-03	铜	mg/kg	18
			镉	mg/kg	0.07
			镍	mg/kg	48
		DEM202503070	pН	无量纲	10.07
		01-T3-1-01	轰轰	mg/kg	3.60
			1,1,1,2-四氯乙烷	μg/kg	ND
			1,1,1-三氯乙烷	μg/kg	ND
AT2	2025.03.11	DEM202503070	1,1,2,2-四氯乙烷	μg/kg	ND
		01-T3-1-02	1,1,2-三氯乙烷	μg/kg	ND
		01-15-1-02	1,1-二氯乙烯	μg/kg	ND
			1,1-二氯乙烷	μg/kg	ND
			1,2,3-三氯丙烷	μg/kg	ND

共 24 页 第 15 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
,			1,2-二氯丙烷	μg/kg	ND
			1,2-二氯乙烷	μg/kg	ND
			1,2-二氯苯	μg/kg	ND
			1,4-二氯苯	μg/kg	ND
			三氯乙烯	μg/kg	ND
			三氯甲烷	μg/kg	ND
			乙苯	μg/kg	ND
			二氯甲烷	μg/kg	ND
			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
			四氯化碳	μg/kg	ND
			氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND
			苯	μg/kg	ND
			苯乙烯	μg/kg	ND
			邻二甲苯	μg/kg	ND
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
			蔗	mg/kg	ND
			2-氯苯酚	mg/kg	ND
			二苯并(ah)蒽	mg/kg	ND
			硝基苯	mg/kg	ND
		DEL (202502070	苯并(a) 芘	mg/kg	ND
		DEM202503070 01-T3-1-03	苯并(a) 蒽	mg/kg	ND
		01-13-1-03	苯并(b)荧蒽	mg/kg	ND
			苯并(k)荧蒽	mg/kg	ND
			苯胺	mg/kg	0.07
			茚并(1,2,3-cd)芘	mg/kg	ND
			萘	mg/kg	ND
		DEM202503070	石油烃(C ₁₀ -C ₄₀)	ma o/leo	7
		01-T3-1-04	石田足(C10-C40)	mg/kg	1
			六价铬	mg/kg	ND
			总汞	mg/kg	0.165
		DEM202503070	总砷	mg/kg	8.88
		01-T3-1-05	铅	mg/kg	11.0
		01-13-1-03	铜	mg/kg	7
			镉	mg/kg	0.02
			镍	mg/kg	31

共 24 页 第 16 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
		DEM202503070	pН	无量纲	9.96
		01-T4-1-01	轰轰	mg/kg	3.51
			1,1,1,2-四氯乙烷	μg/kg	ND
			1,1,1-三氯乙烷	μg/kg	ND
			1,1,2,2-四氯乙烷	μg/kg	ND
			1,1,2-三氯乙烷	μg/kg	ND
			1,1-二氯乙烯	μg/kg	ND
			1,1-二氯乙烷	μg/kg	ND
			1,2,3-三氯丙烷	μg/kg	ND
			1,2-二氯丙烷	μg/kg	ND
			1,2-二氯乙烷	μg/kg	ND
			1,2-二氯苯	μg/kg	ND
			1,4-二氯苯	μg/kg	ND
			三氯乙烯	μg/kg	ND
		DE 1202502070	三氯甲烷	μg/kg	ND
		DEM202503070	乙苯	μg/kg	ND
		01-T4-1-02	二氯甲烷	μg/kg	ND
			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
BT1	2025.03.11		四氯化碳	μg/kg	ND
БП	2023.03.11		氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND
			苯	μg/kg	ND
			苯乙烯	μg/kg	ND N
			邻二甲苯	μg/kg	
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
			蔗	mg/kg	
			2-氯苯酚	mg/kg	ND
			二苯并(ah)蒽	mg/kg	ND
			硝基苯	mg/kg	ND
		DEM202503070	苯并(a) 芘	mg/kg	
		01-T4-1-03	苯并(a)蒽	mg/kg	ND
		01-14-1-03	苯并(b) 荧蒽	mg/kg	ND
			苯并 (k) 荧蒽	mg/kg	ND
			苯胺	mg/kg	0.09
			茚并(1,2,3-cd)芘	mg/kg	
			萘	mg/kg	ND

共 24 页 第 17 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
		DEM202503070 01-T4-1-04	石油烃(C ₁₀ -C ₄₀)	mg/kg	7
			六价铬	mg/kg	ND
			总汞	mg/kg	0.083
		DEM202503070	总砷	mg/kg	4.96
		01-T4-1-05	铅	mg/kg	46.4
		01-14-1-03	铜	mg/kg	17
			镉	mg/kg	0.08
			镍	mg/kg	30
		DEM202503070	pН	无量纲	7.95
		01-T5-1-01	魚魚	mg/kg	1.69
			1,1,1,2-四氯乙烷	μg/kg	ND
			1,1,1-三氯乙烷	μg/kg	ND
			1,1,2,2-四氯乙烷	μg/kg	ND
			1,1,2-三氯乙烷	μg/kg	ND
			1,1-二氯乙烯	μg/kg	ND
			1,1-二氯乙烷	μg/kg	ND
			1,2,3-三氯丙烷	μg/kg	ND
			1,2-二氯丙烷	μg/kg	ND
			1,2-二氯乙烷	μg/kg	ND
			1,2-二氯苯	μg/kg	ND
			1,4-二氯苯	μg/kg	ND
			三氯乙烯	μg/kg	ND
		DEM202503070	三氯甲烷	μg/kg	ND
CT1	2025.03.11	01-T5-1-02	乙苯	μg/kg	ND
CII	2023.03.11	01 13 1 02	二氯甲烷	μg/kg	ND
			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
			四氯化碳	μg/kg	ND
			氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND
			苯	μg/kg	ND
			苯乙烯	μg/kg	ND
			邻二甲苯	μg/kg	ND
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
		DEM202503070	蔗	mg/kg	ND
		01-T5-1-03	2-氯苯酚	mg/kg	ND
		01 13-1-03	二苯并(ah)蒽	mg/kg	ND

共 24 页 第 18 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
			硝基苯	mg/kg	ND
			苯并(a) 芘	mg/kg	ND
			苯并(a) 蒽	mg/kg	ND
			苯并(b) 荧蒽	mg/kg	ND
			苯并(k)荧蒽	mg/kg	ND
			苯胺	mg/kg	0.08
			茚并(1,2,3-cd)芘	mg/kg	ND
			萘	mg/kg	ND
		DEM202503070 01-T5-1-04	石油烃(C ₁₀ -C ₄₀)	mg/kg	8
			六价铬	mg/kg	ND
			总汞	mg/kg	0.099
		DEM202503070	总砷	mg/kg	6.03
		01-T5-1-05	铅	mg/kg	10.5
		01-13-1-03	铜	mg/kg	14
			镉	mg/kg	0.05
			镍	mg/kg	35
		DEM202503070	pН	无量纲	7.89
		01-T6-1-01	轰轰	mg/kg	1.22
			1,1,1,2-四氯乙烷	μg/kg	ND
			1,1,1-三氯乙烷	μg/kg	ND
			1,1,2,2-四氯乙烷	μg/kg	ND
			1,1,2-三氯乙烷	μg/kg	ND
			1,1-二氯乙烯	μg/kg	ND
			1,1-二氯乙烷	μg/kg	ND
			1,2,3-三氯丙烷	μg/kg	ND
			1,2-二氯丙烷	μg/kg	ND
			1,2-二氯乙烷	μg/kg	ND
DT1	2025.03.11		1,2-二氯苯	μg/kg	ND
211	2020.00.11	DEM202503070	1,4-二氯苯	μg/kg	ND
		01-T6-1-02	三氯乙烯	μg/kg	ND
			三氯甲烷	μg/kg	ND
			乙苯	μg/kg	ND
			二氯甲烷	μg/kg	ND
			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
			四氯化碳	μg/kg	ND
			氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND

共 24 页 第 19 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
			苯	μg/kg	ND
			苯乙烯	μg/kg	ND
			邻二甲苯	μg/kg	ND
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
			薜	mg/kg	ND
			2-氯苯酚	mg/kg	ND
			二苯并(ah)蒽	mg/kg	ND
			硝基苯	mg/kg	ND
		DEM202503070	苯并(a) 芘	mg/kg	ND
		01-T6-1-03	苯并(a) 蒽	mg/kg	ND
		01-10-1-03	苯并(b) 荧蒽	mg/kg	ND
			苯并(k)荧蒽	mg/kg	ND
			苯胺	mg/kg	0.07
			茚并(1,2,3-cd)芘	mg/kg	ND
			萘	mg/kg	ND
		DEM202503070 01-T6-1-04	石油烃(C ₁₀ -C ₄₀)	mg/kg	10
			六价铬	mg/kg	ND
			总汞	mg/kg	0.094
		DEM202503070	总砷	mg/kg	6.03
		01-T6-1-05	铅	mg/kg	3.6
			铜	mg/kg	25
			镉	mg/kg	0.06
			镍	mg/kg	59
		DEM202503070	pН	无量纲	7.81
		01-T7-1-01	桑	mg/kg	1.14
			1,1,1,2-四氯乙烷	μg/kg	ND
			1,1,1-三氯乙烷	μg/kg	ND
			1,1,2,2-四氯乙烷	μg/kg	ND
			1,1,2-三氯乙烷	μg/kg	ND
			1,1-二氯乙烯	μg/kg	ND
ET1	2025.03.11		1,1-二氯乙烷	μg/kg	ND
DII	2023.03.11	DEM202503070	1,2,3-三氯丙烷	μg/kg	ND
		01-T7-1-02	1,2-二氯丙烷	μg/kg	ND
			1,2-二氯乙烷	μg/kg	ND
			1,2-二氯苯	μg/kg	ND
			1,4-二氯苯	μg/kg	ND
			三氯乙烯	μg/kg	ND
			三氯甲烷	μg/kg	ND
			乙苯	μg/kg	ND

共 24 页 第 20 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
*			二氯甲烷	μg/kg	ND
			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
			四氯化碳	μg/kg	ND
			氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND
			苯	μg/kg	ND
			苯乙烯	μg/kg	ND
			邻二甲苯	μg/kg	ND
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
			蔗	mg/kg	ND
			2-氯苯酚	mg/kg	ND
			二苯并(ah)蒽	mg/kg	ND
			硝基苯	mg/kg	ND
		DEM202503070	苯并(a) 芘	mg/kg	ND
		01-T7-1-03	苯并(a) 蒽	mg/kg	ND
		01-17-1-03	苯并(b) 荧蒽	mg/kg	ND
			苯并(k)荧蒽	mg/kg	ND
			苯胺	mg/kg	0.08
			茚并(1,2,3-cd)芘	mg/kg	ND
			萘	mg/kg	ND
		DEM202503070 01-T7-1-04	石油烃(C ₁₀ -C ₄₀)	mg/kg	ND
			六价铬	mg/kg	ND
			总汞	mg/kg	0.112
		DEM202503070	总砷	mg/kg	6.67
		01-T7-1-05	铅	mg/kg	11.2
		0117-1-05	铜	mg/kg	26
			镉	mg/kg	0.11
			镍	mg/kg	42
		DEM202503070	pН	无量纲	7.86
		01-T8-1-01	氨氮	mg/kg	1.23
			1,1,1,2-四氯乙烷	μg/kg	ND
ET2	2025.03.11		1,1,1-三氯乙烷	μg/kg	ND
212	2023.03.11	DEM202503070	1,1,2,2-四氯乙烷	μg/kg	ND
		01-T8-1-02	1,1,2-三氯乙烷	μg/kg	ND
			1,1-二氯乙烯	μg/kg	ND
			1,1-二氯乙烷	μg/kg	ND

共 24 页 第 21 页

采样地点	采样日期	样品编号	检测项目	单位	检测结果
			1,2,3-三氯丙烷	μg/kg	ND
			1,2-二氯丙烷	μg/kg	ND
			1,2-二氯乙烷	μg/kg	ND
			1,2-二氯苯	μg/kg	ND
			1,4-二氯苯	μg/kg	ND
			三氯乙烯	μg/kg	ND
			三氯甲烷	μg/kg	ND
			乙苯	μg/kg	ND
			二氯甲烷	μg/kg	ND
			反-1,2-二氯乙烯	μg/kg	ND
			四氯乙烯	μg/kg	ND
			四氯化碳	μg/kg	ND
			氯乙烯	μg/kg	ND
			氯甲烷	μg/kg	ND
			氯苯	μg/kg	ND
			甲苯	μg/kg	ND
			苯	μg/kg	ND
			苯乙烯	μg/kg	ND
			邻二甲苯	μg/kg	ND
			间/对二甲苯	μg/kg	ND
			顺-1,2-二氯乙烯	μg/kg	ND
			蔗	mg/kg	ND
			2-氯苯酚	mg/kg	ND
			二苯并(ah)蒽	mg/kg	ND
			硝基苯	mg/kg	ND
		DEM202503070	苯并(a) 芘	mg/kg	ND
		01-T8-1-03	苯并(a) 蒽	mg/kg	ND
		01-10-1-05	苯并(b) 荧蒽	mg/kg	ND
			苯并(k) 荧蒽	mg/kg	ND
			苯胺	mg/kg	ND
			茚并(1,2,3-cd)芘	mg/kg	ND
			萘	mg/kg	ND
		DEM202503070	石油烃(C ₁₀ -C ₄₀)	mg/kg	7
		01-T8-1-04	六价铬	mg/kg	ND
			总汞	mg/kg	0.136
			总砷	mg/kg	5.86
		DEM202503070 - 01-T8-1-05 -	铅	mg/kg	8.3
			铜	mg/kg	23
			編	mg/kg	0.06
			镍	mg/kg	40
			沐	mg/kg	I 70

共 24 页 第 22 页

类别	检测内容	仪器名称	仪器型号	仪器编号	单位	检出限
	1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、1,1,2,2-四氯乙烷、1,1-二氯乙烷、1,2,3-三氯丙烷、三氯乙烯、二苯、氯苯、邻二甲苯、间/对二甲苯				μg/kg	1.2
	1,2-二氯苯、1,4-二氯苯、二氯甲烷 1,4-二氯苯、二氯甲烷 1,1-二氯乙烯、氯乙烯、氯乙烷、1,1,1-三氯乙烷、四氯化碳、甲苯、顺-1,2-二氯乙烯 1,2-二氯乙烯 1,2-二氯丙烷、三氯甲烷、苯乙烯	XQJC-2112	μg/kg	1.5		
			μg/kg	1.0		
		μg/kg		1.3		
				μg/kg	1.1	
土壤	2-氯苯酚	气相色谱质 谱联用仪	Agilent 7890B-5977A	XQJC-2105	mg/kg	0.06
	рН	pH 计 (实验室)	PHS-3E	XQJC-2201	无量纲	
	蔗、二苯并(ah) 蔥、苯并(a) 芘、 苯并(a) 蔥、苯 并(k) 荧蔥、茚 并(1,2,3-cd) 芘	气相色谱质 谱联用仪	Agilent 7890B-5977A	XQJC-2105	mg/kg	0.1
	六价铬	原子吸收光 谱仪-火焰	Agilent 240DUO	XQJC-2108	mg/kg	0.5
	反-1,2-二氯乙 烯、四氯乙烯	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/kg	1.4
	总汞	原子荧光分 光光度计	PF52	XQJC-2209	mg/kg	0.002
	总砷	原子荧光分 光光度计	PF52	XQJC-2209	mg/kg	0.01
	氨氮	可见光分光 光度计	T6 新悦	XQJC-2211	mg/kg	0.1
	石油烃(C ₁₀ -C ₄₀)	气相色谱仪	Agilent 8860	XQJC-2113	mg/kg	6

共 24 页 第 23 页

类别	检测内容	仪器名称	仪器型号	仪器编号	单位	检出限
	硝基苯、萘	气相色谱质 谱联用仪	Agilent 7890B-5977A	XQJC-2105	mg/kg	0.09
	苯	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/kg	1.9
	苯并(b) 荧蒽	气相色谱质 谱联用仪	Agilent 7890B-5977A	XQJC-2105	mg/kg	0.2
	苯胺	气相色谱质 谱联用仪	Agilent 7890B-5977A	XQJC-2105	mg/kg	0.07
	铅	原子吸收光 谱仪- 石墨炉	Agilent 240DUO	XQJC-2103	mg/kg	0.1
	铜	原子吸收光 谱仪-火焰	Agilent 240DUO	XQJC-2108	mg/kg	1
	镉	原子吸收光 谱仪- 石墨炉	Agilent 240DUO	XQJC-2103	mg/kg	0.01
	镍	原子吸收光 谱仪-火焰	Agilent 240DUO	XQJC-2108	mg/kg	3
	рН	pH/ORP/电 导率测量仪	SX731 型	XQJC-12135	无量纲	
	三氯甲烷、甲苯、 苯	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/L	1.4
	亚硝酸盐氮	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.003
	六价铬	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.004
	四氯化碳	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/L	1.5
地下水	总硬度	白色 50mL 酸式滴定管		XQJC-2803	mg/L	5
	挥发酚	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.0003
	氟化物	实验室pH计	PHSJ-5	XQJC-2217	mg/L	0.05
	氨氮	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.025
	氯化物	离子色谱仪	ICS-600	XQJC-2115	mg/L	0.007
	氯苯	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/L	1.0
	氰化物	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.002

共 24 页 第 24 页

类别	检测内容	仪器名称	仪器型号	仪器编号	单位	检出限
	汞	原子荧光分 光光度计	PF52	XQJC-2209	μg/L	0.04
	浊度	便携式浊度 仪	TN100	XQJC-12125	NTU	0.3
	溶解性总固体	电热恒温鼓 风干燥箱	DHG-9123A	XQJC-2644	mg/L	5
	冷胖性 心 固 体	万分之一电 子天平	ME204E	XQJC-2207	mg/L	3
	石油烃 (C ₁₀ -C ₄₀)	气相色谱仪	Agilent 8860	XQJC-2113	mg/L	0.01
	бÞ	原子荧光分 光光度计	PF52	XQJC-2209	μg/L	0.3
	硒	原子荧光分 光光度计	PF52	XQJC-2209	μg/L	0.4
	硝酸盐氮	紫外可见分 光光度计	T6 新世纪	XQJC-2210	mg/L	0.08
	硫化物	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.003
	硫酸盐	离子色谱仪	ICS-600	XQJC-2115	mg/L	0.018
	碘化物	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.025
	耗氧量	棕色 50mL 酸式滴定管		XQJC-2802	mg/L	0.4
	钠				mg/L	0.12
	铁	电感耦合等			mg/L	0.02
	铜	离子体发射	AVIO 200	XQJC-2109	mg/L	0.006
	铝	光谱仪			mg/L	0.07
	锌、锰				mg/L	0.004
	铅	原子吸收光谱仪-	Agilent	XQJC-2103	μg/L	0.877
	1247 - 1	240DUO	75Q3C-2103	μg/L	0.041	
	阴离子合成洗涤 剂 (阴离子表面 活性剂)	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.05

注: "ND"表示未检出。

--报告结束--

控制编号: XQJC-63001-15

检测报告

(2025) 新环检第 (3240) 号

项目名称 地下水检测 地下水检测

委托单位 托尔专用化学品 (镇江) 有限公司

镇江新区环境监测站有限公司 二零二五年時

上上出

检测报告说明

尊敬的客户:

为保障您的合法权益,请您认真阅读下面的检测报告说明,如有任何疑问, 敬请垂询,我公司将竭诚为您服务。

- 1、如果您对本报告的检测结果有异议,您可于收到报告之日起十日内以单位公 函形式向本公司提起申述,逾期我们将不再受理。
- 2、检测结果高于方法检出限时将直接为您报出检测结果;如果低于方法检出限时以"ND"表示,同时我们会为您注明其方法检出限。
- 3、由于环境样品具有极强的空间性和时间性,本检测结果仅代表检测时委托方提供的工况条件下项目测值,对此请您理解。
- 4、本公司出具的报告,对且仅对您委托样品所列项目的检测结果负责。
- 5、在您收到报告时, 若您发现本报告没有本公司业务专用章、骑缝章, 签发者签字, 本报告无效, 您有权拒绝接收。
- 6、如果您想复制、摘用报告,请您先联系我们出具书面批准。否则对本检测报告进行复制、摘用或篡改引起的法律纠纷我公司不予承担。
- 7、如果您想将本公司的检测结果,用于广告及商业宣传,请您先联系我公司出 县书面批准,否则我们有权追究法律责任。
- 8、本报告我们会出具两份,一份正本给委托客户,一份副本自留存档,存档期限六年。在此我们将承诺,对您的检测结果我们会严格保密。

机构通讯资料:

联系地址: 江苏省镇江新区港南路 345 号中瑞生态产业园创新中心 7 号楼 5 楼

邮政编码: 212132

联系电话 (Tel): 0511-85995701 传真 (Fax): 0511-85995566

电子邮件 (Email): 504161691@qq.com

检测内容

共 13 页 第 1 页

委托单位	托尔专用化学品 (镇江) 有限公司	地址	镇江经开区金港大道 182 号
联系人/电话	陆安洲 18952866268	邮编	212000
采样日期	2025年9月11日	分析日期	2025年9月11日-19日
检测目的		委托检测	
检测内容	地下水: pH、三氯甲烷、亚度、挥发酚、氟化物、氨氮溶解性总固体、甲苯、石油硫化物、硫酸盐、碘化物、苯、钠、铁、铅、铜、铝、离子表面活性剂)	、氯化物、。 烃(C ₁₀ -C ₄₀ 耗氧量、肉	氨苯、氰化物、汞、浊度、)、砷、硒、硝酸盐氮、 艮可见物、臭和味、色度、
检测依据	pH:水质 pH值的测定 电极 三氯甲烷、四氯化碳、氯苯 定 吹扫捕集/气相色谱-质量 亚硝酸盐氮:水质 亚硝酸盐 六价格:地下水质分析方法 苯碳酰二肼分光光度总量的 挥发酚:水质 红物:水质 氟化物的测定 氨氯:水质 氮化物:水质 氟化物的测定 系化物:地下水质分析方法 林酮分光光度法 DZ/T 0064. 汞、砷、694-2014 浊度:水质 固体:重量法 (A) 增补版) 国家环境保护总局石油烃(C10-C40):水质 可相色谱法 HJ 894-2017 硝酸盐氮:水质 頭魚	表 HJ 639-20	:水质 挥发性有机物的测 012 光光度法 GB/T 7493-87 总铬和六价铬量的测定 二 21 滴定法 GB/T 7477-87 安替比林分光光度法 HJ 极法 GB/T 7484-1987 度法 HJ 535-2009 谱法 HJ/T 84-2016 氰化物的测定 吡啶-吡唑 \$的测定 原子荧光法 HJ 75-2019 监测分析方法》(第四版 3.1.7.2 怪 (C10~C40) 的测定 气

检测内容

	共 13 页 第 2 页
	346-2007
	硫化物:水质 硫化物的测定 亚甲基蓝分光光度法 HJ 1226-2021
	硫酸盐:水质 无机阴离子的测定 离子色谱法 HJ 84-2016
	碘化物:地下水质分析方法 第 56 部分: 碘化物的测定 淀粉分光
	光度法 DZ/T 0064.56-2021
	耗氧量:地下水质分析方法 第 68 部分: 耗氧量的测定 酸性高锰
	酸钾滴定法 DZ/T 0064.68-2021
	肉眼可见物:生活饮用水标准检验方法 感官性状和物理指标 7.1
	直接观察法 GB/T 5750.4-2023
	臭和味:生活饮用水标准检验方法 感官性状和物理指标 6.1 嗅气
	和尝味法 GB/T 5750.4-2023
	色度:水质 色度的测定 铂钴比色法 GB/T 11903-1989
	钠、铁、铜、铝、锌、锰:水质 32 种元素的测定 电感耦合等离子
	体发射光谱法 HJ 776-2015
	铅、镉:石墨炉原子吸收法测定镉、铜、铅(B)《水和废水监测
	分析方法》(第四版增补版) 国家环保总局(2002) 3.4.7.4
	阴离子合成洗涤剂 (阴离子表面活性剂):生活饮用水标准检验方
	法 感官性状和物理指标13.1 亚甲蓝分光光度法GB/T 5750.4-2023
解释与说明	
结论	见检测结果。
编制	库
	广文君
签发 蔡	紫昊 签发日期 2025年10月31日

共 13 页 第 3 页

检测类别:地下水

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEM20250711 005-DS1-1-01		硫化物	mg/L	ND
				三氯甲烷	μg/L	ND
				四氯化碳	μg/L	ND
		DEM20250711 005-DS1-1-02		氯苯	μg/L	ND
		000 201 102		甲苯	μg/L	ND
				苯	μg/L	ND
				肉眼可见物	无量纲	无肉眼可见物
		DEM20250711 005-DS1-1-03		臭和味	H-	无任何臭,此为 地下水,无法确 保对人体无害, 故无法尝味。无/0
		DEM20250711 005-DS1-1-04		阴离子合成洗 涤剂 (阴离子 表面活性剂)	mg/L	ND
		DEM20250711 005-DS1-1-05	微浑微灰无味	汞	μg/L	0.12
				砷	μg/L	ND
DZS1	2025.9.11			硒	μg/L	ND
		DEM20250711 005-DS1-1-06		挥发酚	mg/L	ND
		DEM20250711 005-DS1-1-07		总硬度	mg/L	276
		DEM20250711		氨氮	mg/L	0.348
		005-DS1-1-08		耗氧量	mg/L	1.5
				钠	mg/L	26.1
				铁	mg/L	0.16
				铅	μg/L	ND
		DEM20250711		铜	mg/L	ND
		005-DS1-1-09		铝	mg/L	0.11
				锌	mg/L	0.025
				锰	mg/L	2.63
				镉	μg/L	0.296
		DEM20250711 005-DS1-1-10		亚硝酸盐氮	mg/L	0.004
				氟化物	mg/L	0.36

共 13 页 第 4 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
			Ž	氯化物	mg/L	25.7
				硝酸盐氮	mg/L	0.36
				硫酸盐	mg/L	53.6
		DEM20250711 005-DS1-1-11		石油烃 (C ₁₀ -C ₄₀)	mg/L	ND
		DEM20250711 005-DS1-1-12		六价铬	mg/L	ND
		DEM20250711 005-DS1-1-13		溶解性总固体	mg/L	625
		DEM20250711 005-DS1-1-15		色度	度	5
		DEM20250711 005-DS1-1-16		氰化物	mg/L	ND
		DEM20250711 005-DS1-1-17		浊度	NTU	210
		DEM20250711 005-DS1-1-18		pН	无量纲	8.5
		DEM20250711 005-DS1-1-19		碘化物	mg/L	0.925
		DEM20250711 005-DS2-1-01		硫化物	mg/L	ND
		DEM20250711 005-DS2-1-02		三氯甲烷	μg/L	ND
				四氯化碳	μg/L	ND
				氯苯	μg/L	ND
				甲苯	μg/L	ND
				苯	μg/L	ND
				肉眼可见物	无量纲	无肉眼可见物
AS1	2025.9.11	DEM20250711 005-DS2-1-03	微浑微灰 无味	臭和味	8 	无任何臭,此为 地下水,无法确 保对人体无害, 故无法尝味。无/0
		DEM20250711 005-DS2-1-04		阴离子合成洗 涤剂 (阴离子 表面活性剂)	mg/L	ND
				汞	μg/L	0.28
		DEM20250711 005-DS2-1-05		砷	μg/L	1.5
				硒	μg/L	ND
		DEM20250711 005-DS2-1-06		挥发酚	mg/L	ND
		DEM20250711 005-DS2-1-07		总硬度	mg/L	269

共 13 页 第 5 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEM20250711			mg/L	0.510
		005-DS2-1-08		耗氧量	mg/L	2.1
				钠	mg/L	13.4
				———— 铁	mg/L	0.10
				铅	μg/L	ND
		DEM20250711		铜	mg/L	ND
		005-DS2-1-09		铝	mg/L	ND
				锌	mg/L	0.025
				锰	mg/L	1.06
				镉	μg/L	ND
				亚硝酸盐氮	mg/L	0.032
				氟化物	mg/L	0.34
		DEM20250711 005-DS2-1-10		氯化物	mg/L	62.3
		005 1552 1 10		硝酸盐氮	mg/L	1.22
				硫酸盐	mg/L	43.9
		DEM20250711 005-DS2-1-11		石油烃 (C ₁₀ -C ₄₀)	mg/L	0.10
		DEM20250711 005-DS2-1-12		六价铬	mg/L	ND
		DEM20250711 005-DS2-1-13		溶解性总固体	mg/L	537
		DEM20250711 005-DS2-1-15		色度	度	10
		DEM20250711 005-DS2-1-16		氰化物	mg/L	ND
		DEM20250711 005-DS2-1-17		浊度	NTU	154
		DEM20250711 005-DS2-1-18		рН	无量纲	8.3
		DEM20250711 005-DS2-1-19		碘化物	mg/L	0.034
		DEM20250711 005-DS3-1-01		硫化物	mg/L	ND
		and the second s	nu set nu s	三氯甲烷	μg/L	ND
BS1	2025.9.11	DEM20250711	微浑微灰 无味	四氯化碳	μg/L	ND
		005-DS3-1-02	2 Q 21-	氯苯	μg/L	ND
				甲苯	μg/L	ND

共 13 页 第 6 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
				苯	μg/L	ND
				肉眼可见物	无量纲	无肉眼可见物
		DEM20250711 005-DS3-1-03		臭和味	:	无任何臭,此为 地下水,无法确 保对人体无害, 故无法尝味。无/0
		DEM20250711 005-DS3-1-04		阴离子合成洗 涤剂 (阴离子 表面活性剂)	mg/L	ND
				汞	μg/L	0.11
		DEM20250711 005-DS3-1-05		砷	μg/L	5.5
		SHOOKENS MINISTRUMENTY DAMP BOTHOUS		硒	μg/L	ND
		DEM20250711 005-DS3-1-06		挥发酚	mg/L	ND
		DEM20250711 005-DS3-1-07		总硬度	mg/L	473
		DEM20250711		氨氮	mg/L	1.77
		005-DS3-1-08		耗氧量	mg/L	2.5
				钠	mg/L	25.3
				铁	mg/L	0.16
				铅	μg/L	ND
		DEM20250711		铜	mg/L	ND
		005-DS3-1-09		铝	mg/L	ND
				锌	mg/L	0.013
				锰	mg/L	6.14
				镉	μg/L	ND
				亚硝酸盐氮	mg/L	0.003
				氟化物	mg/L	0.38
		DEM20250711 005-DS3-1-10		氯化物	mg/L	21.6
		on country breat sections. Section 155,000		硝酸盐氮	mg/L	0.27
				硫酸盐	mg/L	11.4
		DEM20250711 005-DS3-1-11		石油烃 (C ₁₀ -C ₄₀)	mg/L	0.01
		DEM20250711 005-DS3-1-12		六价铬	mg/L	ND

共 13 页 第 7 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEM20250711 005-DS3-1-13		溶解性总固体	mg/L	715
		DEM20250711 005-DS3-1-15		色度	度	20
		DEM20250711 005-DS3-1-16	2	氰化物	mg/L	ND
		DEM20250711 005-DS3-1-17	2	浊度	NTU	281
		DEM20250711 005-DS3-1-18	8	рН	无量纲	8.5
		DEM20250711 005-DS3-1-19		碘化物	mg/L	0.720
		DEM20250711 005-DS4-1-01		硫化物	mg/L	ND
				三氯甲烷	μg/L	ND
				四氯化碳	μg/L	ND
		DEM20250711 005-DS4-1-02		氯苯	μg/L	ND
		on county body when by outy manager		甲苯	μg/L	ND
				苯	μg/L	ND
		DEM20250711 005-DS4-1-03		肉眼可见物	无量纲	无肉眼可见物
				臭和味		无任何臭,此为 地下水,无法确 保对人体无害, 故无法尝味。无/0
CS1	2025.9.11	DEM20250711 005-DS4-1-04	微浑无色	阴离子合成洗 涤剂 (阴离子 表面活性剂)	mg/L	0.053
		ANTOCONOMINE EXECUTIVE NO PROCESSAGES AND	无味	汞	μg/L	0.11
		DEM20250711 005-DS4-1-05		砷	μg/L	0.4
				硒	μg/L	ND
		DEM20250711 005-DS4-1-06		挥发酚	mg/L	ND
		DEM20250711 005-DS4-1-07		总硬度	mg/L	325
		DEM20250711		氨氮	mg/L	0.145
		005-DS4-1-08		耗氧量	mg/L	1.2
				钠	mg/L	19.4
		DEM20250711		铁	mg/L	0.06
		005-DS4-1-09		铅	μg/L	ND
				铜	mg/L	ND

共 13 页 第 8 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
				铝	mg/L	ND
				锌	mg/L	0.004
				锰	mg/L	2.23
				镉	μg/L	0.077
				亚硝酸盐氮	mg/L	ND
				氟化物	mg/L	0.32
		DEM20250711 005-DS4-1-10		氯化物	mg/L	17.3
		003-D54-1-10		硝酸盐氮	mg/L	0.11
				硫酸盐	mg/L	50.6
		DEM20250711 005-DS4-1-11		石油烃 (C ₁₀ -C ₄₀)	mg/L	0.01
		DEM20250711 005-DS4-1-12		六价铬	mg/L	ND
		DEM20250711 005-DS4-1-13		溶解性总固体	mg/L	532
		DEM20250711 005-DS4-1-15		色度	度	10
		DEM20250711 005-DS4-1-16	1	氰化物	mg/L	ND
		DEM20250711 005-DS4-1-17		浊度	NTU	51
		DEM20250711 005-DS4-1-18		pН	无量纲	8.4
		DEM20250711 005-DS4-1-19		碘化物	mg/L	0.223
		DEM20250711 005-DS5-1-01		硫化物	mg/L	ND
				三氯甲烷	μg/L	ND
				四氯化碳	μg/L	ND
		DEM20250711 005-DS5-1-02		氯苯	μg/L	ND
				甲苯	μg/L	ND
DS1	2025.9.11		微浑微灰	苯	μg/L	ND
			无味	肉眼可见物	无量纲	无肉眼可见物
		DEM20250711 005-DS5-1-03		臭和味	5 	无任何臭,此为 地下水,无法确 保对人体无害, 故无法尝味。无/0
		DEM20250711 005-DS5-1-04		阴离子合成洗 涤剂 (阴离子 表面活性剂)	mg/L	ND

共 13 页 第 9 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
				汞	μg/L	0.11
		DEM20250711 005-DS5-1-05		砷	μg/L	1.1
				硒	μg/L	ND
		DEM20250711 005-DS5-1-06		挥发酚	mg/L	ND
		DEM20250711 005-DS5-1-07		总硬度	mg/L	355
		DEM20250711		轰轰	mg/L	0.623
		005-DS5-1-08		耗氧量	mg/L	1.4
				钠	mg/L	12.4
				铁	mg/L	0.04
				铅	μg/L	ND
		DEM20250711		铜	mg/L	ND
		005-DS5-1-09		铝	mg/L	ND
				锌	mg/L	0.010
				锰	mg/L	3.93
				镉	μg/L	ND
			A	亚硝酸盐氮	mg/L	ND
				氟化物	mg/L	0.32
		DEM20250711 005-DS5-1-10		氯化物	mg/L	17.5
				硝酸盐氮	mg/L	0.41
				硫酸盐	mg/L	33.2
		DEM20250711 005-DS5-1-11		石油烃 (C ₁₀ -C ₄₀)	mg/L	0.01
		DEM20250711 005-DS5-1-12		六价铬	mg/L	ND
		DEM20250711 005-DS5-1-13		溶解性总固体	mg/L	579
		DEM20250711 005-DS5-1-15		色度	度	10
		DEM20250711 005-DS5-1-16		氰化物	mg/L	ND
		DEM20250711 005-DS5-1-17		浊度	NTU	119
		DEM20250711 005-DS5-1-18		рН	无量纲	8.2
		DEM20250711 005-DS5-1-19		碘化物	mg/L	0.700

共 13 页 第 10 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
		DEM20250711 005-DS6-1-01		硫化物	mg/L	ND
				三氯甲烷	μg/L	ND
				四氯化碳	μg/L	ND
		DEM20250711 005-DS6-1-02		氯苯	μg/L	ND
				甲苯	μg/L	ND
				苯	μg/L	ND
				肉眼可见物	无量纲	无肉眼可见物
		DEM20250711 005-DS6-1-03		臭和味	J	无任何臭,此为 地下水,无法确 保对人体无害, 故无法尝味。无/0
		DEM20250711 005-DS6-1-04		阴离子合成洗 涤剂 (阴离子 表面活性剂)	mg/L	ND
				汞	μg/L	0.09
		DEM20250711 005-DS6-1-05	. 清澈无色 无味	砷	μg/L	2.9
T.C.1				硒	μg/L	3.6
ES1	2025.9.11	DEM20250711 005-DS6-1-06		挥发酚	mg/L	ND
		DEM20250711 005-DS6-1-07		总硬度	mg/L	237
		DEM20250711		魚魚	mg/L	1.79
		005-DS6-1-08		耗氧量	mg/L	2.5
				钠	mg/L	110
				铁	mg/L	0.06
				铅	μg/L	ND
		DEM20250711		铜	mg/L	ND
		005-DS6-1-09		铝	mg/L	ND
				锌	mg/L	0.040
				锰	mg/L	0.902
				镉	μg/L	2.62
				亚硝酸盐氮	mg/L	0.329
		DEM20250711 005-DS6-1-10		氟化物	mg/L	0.40
				氯化物	mg/L	96.4

共 13 页 第 11 页

采样地点	采样日期	样品编号	样品性状	检测项目	单位	检测结果
				硝酸盐氮	mg/L	0.43
				硫酸盐	mg/L	104
		DEM20250711 005-DS6-1-11		石油烃 (C ₁₀ -C ₄₀)	mg/L	ND
		DEM20250711 005-DS6-1-12		六价铬	mg/L	ND
		DEM20250711 005-DS6-1-13		溶解性总固体	mg/L	677
		DEM20250711 005-DS6-1-15		色度	度	5
		DEM20250711 005-DS6-1-16		氰化物	mg/L	ND
		DEM20250711 005-DS6-1-17		浊度	NTU	24
		DEM20250711 005-DS6-1-18		pН	无量纲	8.3
		DEM20250711 005-DS6-1-19		碘化物	mg/L	0.028

共 13 页 第 12 页

类别	检测内容	仪器名称	仪器型号	仪器编号	单位	检出限
	pН	便携式 pH/ORP/电 导率测量仪	SX731 型	XQJC-1293	无量纲	
	三氯甲烷、甲 苯、苯	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/L	1.4
	亚硝酸盐氮	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.003
	六价铬	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.004
	四氯化碳	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/L	1.5
	总硬度	白色 50mL 酸式滴定管	(MM)	XQJC-2803	mg/L	5
	挥发酚	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.0003
	氟化物	实验室pH计	PHSJ-5	XQJC-2217	mg/L	0.05
	氨氮	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.025
地下水	氯化物	离子色谱仪	ICS-600	XQJC-2115	mg/L	0.007
	氯苯	气质联用色 谱仪	Agilent 8860-5977B	XQJC-2112	μg/L	1.0
	氰化物	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.002
	汞	原子荧光分 光光度计	PF52	XQJC-2209	μg/L	0.04
	浊度	便携式浊度仪	TN100	XQJC-12126	NTU	0.3
	溶解性	电热恒温鼓 风干燥箱	DHG-9123A	XQJC-2644	mg/L	5
	总固体	万分之一电 子天平	ME204E	XQJC-2207	mg/L	3
	石油烃 (C ₁₀ -C ₄₀)	气相色谱仪	Agilent 8860	XQJC-2113	mg/L	0.01
	种	原子荧光分 光光度计	PF52	XQJC-2209	μg/L	0.3
	硒	原子荧光分 光光度计	PF52	XQJC-2209	μg/L	0.4
	硝酸盐氮	紫外可见分 光光度计	T6 新世纪	XQJC-2210	mg/L	0.08

共 13 页 第 13 页

类别	检测内容	仪器名称	仪器型号	仪器编号	单位	检出限
	硫化物	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.003
	硫酸盐	离子色谱仪	ICS-600	XQJC-2115	mg/L	0.018
	碘化物	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.025
	耗氧量	棕色 50mL 酸式滴定管	33	XQJC-2802	mg/L	0.4
	钠	电感耦合等 离子体发射 光谱仪	AVIO 200	XQJC-2109	mg/L	0.12
	铁	电感耦合等 离子体发射 光谱仪	AVIO 200	XQJC-2109	mg/L	0.02
	铅	原子吸收光 谱仪-石墨炉	Agilent 240DUO	XQJC-2103	μg/L	0.877
	铜	电感耦合等 离子体发射 光谱仪	AVIO 200	XQJC-2109	mg/L	0.006
	铝	电感耦合等 离子体发射 光谱仪	AVIO 200	XQJC-2109	mg/L	0.07
	锌、锰	电感耦合等 离子体发射 光谱仪	AVIO 200	XQJC-2109	mg/L	0.004
	镉	原子吸收光 谱仪-石墨炉	Agilent 240DUO	XQJC-2103	μg/L	0.041
	阴离子合成洗 涤剂 (阴离子 表面活性剂)	可见光分光 光度计	T6 新悦	XQJC-2211	mg/L	0.05

注: "ND"表示未检出。

--报告结束--

镇江新区环境监测站有限公司

任务编号 DEM20250307001

土壤现场记录表

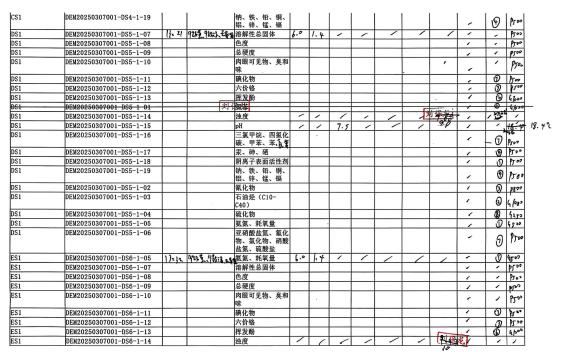
控制组号,10JC-62099-20

采样日期 2025.03.11 项目名录 55年土壤和上半年地下水自行》 杭井保度 /

	采样点	보시사는	•				样品	姓林	
采样点位名称 及编号	东经	北纬	样品编号	采样深度 (m)	检测项目	颜色	气味	湿度	上级资业
ZTO (厂外对									新七
照点)	119°36′24"	32 9 25	DEM20250307001-T1-1-01	0-2	pH、氦氮	褐色	E	Ŧ	22
ZTO (厂外对 照点)	/	1	DEM20250307001-T1-1-02	/	氨苯、苯、二氮甲烷、甲苯、氮甲烷、 氨乙烯、三氮甲烷、1, 1- 三氮乙烷、四氮化碳、1, 2, 3- 三氮丙烷、三氮乙烯、反-1, 2- 二氮丙烷、三氮乙烯、反-1, 2- 二氮乙烷、1, 1-二氮乙烷、1, 1, 2- 三氮乙烷、2末、何/对二甲苯、大乙烯、邻二甲苯、1, 1, 2, 2- 回氮乙烷、1, 2-二氮乙烷、1, 2- 二氮苯、1, 1, 1, 2-四氮乙烷、1, 2- 二氮苯、1, 1, 1, 2-四氮乙烷、1, 1- 二氮乙烯、例-1, 2-二氮乙烷、1, 1- 二氮乙烯、例-1, 2-二氮乙烷。	/	/	/	/
ZTO(厂外对 照点)	/	/	DEM20250307001-T1-1-03	1	郡井(1,2,3- cd) 花、菜井(b) 荧蒽、2- 氯苯酚、硝基苯、蔗、二苯井(ah) 蔥 、苯井(a) 花、苯胺、苯井(k) 荧蒽 、苯升(a) 蔥、萘	/	1	1	/
ZTO (厂外对 照点)	/	,	DEM20250307001-T1-1-04	/	石油烃 (C10-C40)	/	/	1	/
ZTO (厂外对 照点)	/	1	DEM20250307001-T1-1-05	/	铅、六价铬、总砷、总汞、铜、镍、镉	/	/	/	1
AT1	1193/199	32 9 33"	DEM20250307001-T2-1-01	0.2	pH、氨氮	杨色	Æ	Ŧ	彩土
AT1	/	/	DEM20250307001-T2-1-02		氣來 苯 . 二氯甲烷、甲苯、氯甲烷、 氧乙烯、三氧甲烷、1, 1- 三氯乙烷、四氯化碳、1, 2, 3- 三氯丙烷、三氯乙烯、反-1, 2- 二氯丙烷、三氯乙烯、1, 1- 三氯乙烷、1, 1-二氯乙烷、1, 1, 2- 二氯苯、四氯乙烯、乙苯、间/对二甲苯、苯乙烯、邻二甲苯、1, 1, 2, 2- 四氯乙烷、1, 2-二氯乙烷、1, 2- 二氯苯、1, 1, 1, 2-四氯乙烷、1, 1, 2- 二氯苯、1, 1, 1, 2-四氯乙烷、1, 1- 二氯乙烯、胂(1) 2-二氯乙烷	\	/	/	/

AT1		,	DEM20250307001-T2-1-03	_	郡并(1,2,3- cd) 花、苯并(b) 荧蒽、2- 氯苯酚、硝基苯、蒽、二苯并(ah) 蒽 、苯并(a) 芘、苯胺、苯并(k) 荧蒽 、苯并(a) 蒽、萘	,	_		_
AT1	,	1	DEM20250307001-T2-1-04		石油烃 (C10-C40)		/	/	/
AT1	/		DEM20250307001-T2-1-05	,	铅、六价铬、总砷、总汞、铜、镍、镉	/	/	/	-
AT2	119 36'23"	32°9'33"	DEM20250307001-T3-1-01	0.2	pH、氨氮	188.	£	Ŧ	粉土
AT2		-	DEM20250307001-T3-1-02		類案、案、二類甲烷、甲案、氮甲烷、 泵乙烯、三氮甲烷、1,1-1- 三氮乙烷、四氮化碳、1,2,3- 三氮丙烷、三氮乙烯、反-1,2- 三氮乙烯、1,1-二氮乙烷、1,1-2- 三氮乙烯、1,1-二氮乙烷、1,1-2- 三氮乙烷、1,2-二 三氮乙烷、1,2-二 三氮乙烷、1,2-二 三氮乙烷、1,2-二 三氮乙烷、1,1,2-二 三氮乙烷、1,1-1-三氮乙烯、1,1-1-三氮乙烯、例7,1-2-三氮乙烷、1,1-1	_		/	\
AT2	/	/	DEM20250307001-T3-1-03		部并(1,2,3- cd) 花、茉井(b) 荧蔥、2- 氯苯酚、硝基苯、蔗、二苯并(ah) 蔥 、末井(a) 芘、苯胺、苯并(k) 荧蔥 、苯并(a) 蔥、菉	/	/	/	/
AT2	/	/	DEM20250307001-T3-1-04	/	石油烃 (C10-C40)		/	1	
AT2	/		DEM20250307001-T3-1-05	/	铅、六价铬、总砷、总汞、铜、镍、镉	/	/		1
BT1	11936'19"	32 9 '35"	DEM20250307001-T4-1-01	0.2	pH、氨氮	福台	£	7	松工
BT1			DEM20250307001-T4-1-02	/	類案 案 . 二類甲烷、甲苯、氮甲烷、 第乙烯 - 三氧甲烷、1, 1- 三氮乙烷、四氮化碳、1, 2, 3- 三氮丙烷、三氮乙烯、反-1, 2- 二氮乙烯、1, 1-二氮乙烷、1, 1, 2- 三氮乙烷、1, 2-二氮乙烷、1, 1, 2- 三氮乙烷、1, 2-二氮乙烷、1, 2- 四氮乙烷、1, 2-二氮乙烷、1, 2- 二氮苯、1, 1, 1, 2-四氮乙烷、1, 1- 二氮苯、1, 1, 1, 2-二氮乙烷、1, 1- 二氮苯、1, 1, 1, 2-二氮乙烷、1, 1- 二氮乙烷、1, 2-二氮乙烷、1, 1-	,	/		1
BT1	/	/	DEM20250307001-T4-1-03	/	商并(1,2,3- cd) 在、苯并(b) 荧蒽、2- 氮苯酚、硝基苯、蒽、二苯并(ah) 蒽 、苯并(a) 花、苯胺、苯并(k) 荧蒽 、苯并(a) 蒽、萘	/	/	/	/

BT1	_		DEM20250307001-T4-1-04	-	石油烃 (C10-C40)		_	_	_
BT1	/		DEM20250307001-T4-1-05	-	铅、六价铬、总砷、总汞、铜、镍、镉	/	/	/	_
CT1	119361247	32 9 357	DEM20250307001-T5-1-01	0.2	pH、氨氮	+54,	无	Ŧ	转土
сті	,	,	DEM20250307001-T5-1-02	0. 1	氯苯、苯、二氮甲烷、甲苯、氮甲烷、 氯乙烯、三氮甲烷、1,2,3- 三氮乙烷、四氮化碳、1,2,3- 三氮八烷、1,2- 三氮八烷、1,1-二氮乙烷、1,1-2- 三氮乙烷、1,1-二氮乙烷、1,1-2- 三氮乙烷、1,2-二氮乙烷、1,2- 四氮乙烯、1,2-二氮乙烷、1,2- 四氮乙烷、1,2-二氮乙烷、1,2- 二氮苯、1,1,1,2-四氮乙烷、1,2- 二氮苯、1,1,1,2-四氮乙烷、1,1- 二氮乙烷、1,2-二氮乙烷、1,1- 二氮乙烷、1,1-三氮乙烷、1,2-	神島色	£	Ŧ	粒
CT1	/	/	DEM20250307001-T5-1-03	/	市并(1,2,3- cd) 花、苯并(b) 荧蒽、2- 氟苯酚、硝基苯、菌、二苯并(ah) 蒽 、苯并(a) 芘、苯胺、苯并(k) 荧蒽 、苯并(a) 蒽、萘	1	/	/	/
CT1	,	/	DEM20250307001-T5-1-04	/	石油烃 (C10-C40)	1	/	/	/
CT1	/	/	DEM20250307001-T5-1-05	/	铅、六价铬、总砷、总汞、铜、镍、镉	/	/	/	/
DT1	1199361249	32091329	DEM20250307001-T6-1-01	0-2	pH、氨氮	*8e	Æ	Ŧ	#\$z
					氯苯、苯、二氯甲烷、甲苯、氯甲烷、 氯乙烯、三氯甲烷、1,1,1-				
DT1	/	,	DEM20250307001-T6-1-02	,	三氧反烧、四氧化碳、1,2,3 - 三氯丙炔、1,2 - 三氯丙炔、三氯乙烯、反-1,2 - 二氯丙烷、1,1 - 二氯乙烷、1,1 - 2 - 三氯乙烷、1,2 - 三氯壬烷四氯乙烷、1,2,2 - 二氯壬烷、1,2 - 二氯苯、1,1,1,2 - 二氯苯、1,1,1,2 - 二氯乙烷、1,2 - 二氯乙烷、1,2 - 二氯乙烷、1,2 - 二氯乙烷、6,1 - 二氯乙烷、6,1 - 二氯乙烷、6,1 - 二氯乙烷				
DT1	1	/	DEM20250307001-T6-1-02 DEM20250307001-T6-1-03	,	三氣丙烷、1,2- 二氯丙烷、三氯乙烯、反-1,2- 二氯乙烯、1,1-二氯乙烷、1,1,2- 三氯乙烷、1,4- 二氯苯、四氯乙烯、乙苯、何/对二甲苯 苯乙烯、邻二甲苯、1,1,2,2- 四氯乙烷、1,2-二氯苯、1,1,1,2-四氯乙烷、1,2-	/	· ·		/
	/	/		/	三氣丙烷、1,2- 二氯丙烷、三氯乙烯、反-1,2- 二氯乙烯、1,1-二氯乙烷、1,1,2- 三氯乙烷、1,4- 二氯苯、四氯乙烷、2,4- 二氯苯、四氯乙烷、1,2-二氯乙烷、1,2-二二氢乙烷、1,2-二二氢乙烷、1,1-(2-二氯乙烯、胺-1,2-二氯乙烯 (2)-(4)-(4)-(4)-(4)-(4)-(4)-(4)-(4)-(4)-(4	/		()	/
DT1	/	1	DEM20250307001-T6-1-03	/	三無丙條 1, 2 二額丙條 - 二銀万條 - 三級万條 - 三級乙條 - 1, 1 - 二氢乙烷 - 1, 1 - 2 - 三氯乙烯 - 1, 1 - 二氢乙烷 - 1, 1 - 2 - 三氯乙烯 - 2, 1 - 2 - 三氯乙烷 - 1, 1 - 三氮乙烯 - 與 - 三氯乙烯 - 1, 1 - 三氮乙烯 - 三氮乙烯 - 三氮二烯 - 三氮二烷 - 三氮元烷 -	/		· /	/ / *k±


ET1	/		DEM20250307001-T7-1-02	,	 氯苯、苯、二氯甲烷、甲苯、氯甲烷、氯乙烯、三氯甲烷、1, 1, 1- 三氯乙烷、四氯化碳、1, 2, 3- 三氯丙烷、1, 2- 二氯丙烷、三氯乙烯、反-1, 2- 二氯乙烷、1, 1-二氯乙烷、1, 1, 2- 二氯苯、四氯乙烯、乙苯、何/对二甲苯、苯乙烯、60-甲苯、1, 1, 2, 2- 四氯乙烷、1, 2-二氯乙烷、1, 2, 2- 二氯乙烯、顶-1, 2-二氯乙烯、1, 1- 二氯乙烯、顺-1, 2-二氯乙烯、1- 	((
ET1	/	,	DEM20250307001-T7-1-03	/	商并(1,2,3- cd) 芘、苯并(b) 荧蒽、2- 氯苯酚、硝基苯、菌、二苯并(ah) 蒽 、苯并(a) 芘、苯胺、苯并(k) 荧蒽 、苯并(a) 蒽、萘	1	/	/	
ET1	/	1	DEM20250307001-T7-1-04	-	石油烃 (C10-C40)	1	-	/	1
ET1	/		DEM20250307001-T7-1-05	-	铅、六价铬、总砷、总汞、铜、镍、镉	1	1	/	1
ET2	[[9°36'27"	22 9'33"	DEM20250307001-T8-1-01	0-7	pH、氨氮	*8é	£	Ŧ	粉土
ET2	/	/	DEM20250307001-T8-1-02		(類案 案 、三類甲烷、甲苯、氮甲烷、 第乙烯、三氯甲烷、1,1-1- 三氮乙烷、四氮化碳、1,2,3- 三氮丙烷、1,2- 三氮丙烷、1,2- 三氮乙烷、1,1-二氢乙烷、1,1-2- 三氢乙烷、1,1-二氢乙烷、1,1-2- 三氢苯、四氨乙烯、乙苯、间/对二甲苯、末乙烯、邻二甲苯、1,1,2- 四氯乙烷、1,2-二氯乙烷、1,2- 二氯苯、1,1,1-四氯乙烷、1,2- 二氯苯、1,1,1-四氯乙烷、1,1- 三氮乙烯、颜十1,2-二氯乙烷	/		\	
ET2	/	/	DEM20250307001-T8-1-03	/	郡并 (1, 2, 3- cd) 花、苯并 (b) 荧葱、2- 氯苯酚、硝基苯、萬、二苯并 (ah) 蒽 、苯并 (a) 芘、苯胺、苯并 (k) 荧蒽 、苯并 (a) 蒽、萘	/	/	_	,
ET2	/	-	DEM20250307001-T8-1-04	/	石油烃 (C10-C40)	/			/
ET2	1		DEM20250307001-T8-1-05	1	铅、六价铬、总砷、总汞、铜、镍、镉	/			/
AT1	11936194	2) 9 31	DEM20250307001-T-X-1-01	0.2	pH、氨氮	/	-		-

AT1		(DEM20250307001-T-X-1-02		□ 無甲烧、甲苯、氯甲烷、氯乙烯、三 無甲烷、1, 1, 1-三 無原烷、1, 2, 3—三 無丙烷、1, 2-三 無丙烷、1, 2-三 氟丙烷、1, 1-三 氟乙烯、1, 1-三 氟乙烷、1, 1, 2-三 氟乙烯、2, 1, 1, 2-三 素、四氢乙烯、乙苯、同/对二甲苯、英乙烯、邻二甲苯、1, 1, 2, 2-四氮乙烷、1, 2-二氯乙烷、1, 2-二氯乙烯、1, 1, 2-四氯乙烷、1, 1, 1-二氯乙烯、刷-1, 2-二氯乙烯、酮-1, 2-二氯乙烯、酮-1, 2-二氯乙烯、酮-1, 2-二 氯乙烯、酮-1, 2-二 氯乙烯、酮-1, 2-二 氯乙烯、酮-1, 2-二 氯乙烯、氯苯、本			/	
AT1	1	1	DEM20250307001-T-X-1-03	/	市并 (1, 2, 3- cd) 花、苯并 (b) 荧葱、2- 氯苯酚、硝基苯、蔗、二苯并 (ah) 蔥 、苯并 (a) 芘、苯胺、苯并 (k) 荧蒽 、苯并 (a) 蔥、裝	-	/	1	/
AT1	_	. /	DEM20250307001-T-X-1-04	1	石油烃 (C10-C40)	/		/	
AT1	/	/	DEM20250307001-T-X-1-05	/	铅、六价铬、总砷、总汞、铜、镍、镉	/	/	/	_
土壤特征及自 然情况综合叙 述	逐變	Ê	如污控区,说明采样点所处区域及周边企 染来源等特征	业行业污	/	备注			
無性人员 刘保治 - 黄マ谷 - 中核人 J-マル									

镇江新区环境监测站:	有限公司									控	制编号: XQ	TC-62027-24		
			地	下水采样原	始证	录表	₹							
委托编号 DEM202	250307001	项目:	名称	2025年土壤和上半年期	也下水自	行监测		采料	作日期			2025. 05. 09		
仪器型号及编号	8731 XOSI- 12/35	_ 1	1 N/00 XB1-1	2119										
pH值校准:	1#标准缓冲溶液理论值 4.00	定位值	9.00	2#标准缓冲溶液理论值	6. 86	定位值	6-86		3#标准缓冲	溶液理论值	9. 18	定位值	9.18	
溶解氧零点校准是	否符合要求 □是/□否; 水饱和空气机			S: 氧化还原电位标准(值(251	C) 430n	iv.测量	直(25℃) mv,	绝对误差是	否满足≤10	Omv的要求:	□是/	- 口否
								现场测	定项目			出水流速	保	77 +14 470
监测井名称	样品编号	采样 时间	感官描述	分析项目	井深	水位	pН	DO	ORP	电导率	浊度	(L/min)	保存方	采样容 器及样 品体积
					m	m	无量纲	mg/L	mV	μS/cm	NTU		法	品体积
DZS1	DEM20250307001-DS1-1-06	18:08	维克斯 斯勒	亚硝酸盐氮、氟化物、氯化物、氯化物、硝酸盐氮、硫酸盐	6.0	1.0	_	1	/	1	/	,	0	9580
DZS1	DEM20250307001-DS1-1-19			钠、铁、铅、铜、 铝、锌、锰、镉								,	¥	P50 0
DZS1	DEM20250307001-DS1-1-18			阴离子表面活性剂								/	Φ	1500
DZS1	DEM20250307001-DS1-1-17			汞、砷、硒								/	Ø	P500
DZS1	DEM20250307001-DS1-1-16			三氯甲烷、四氯化 碳、甲苯、苯、5.素								/	0	P500
DZS1	DEM20250307001-DS1-1-15			рН	/		7.4		/			/	-	1
DZS1	DEM20250307001-DS1-1-14			浊度							均田方	1	/	1
DZS1	DEM20250307001-DS1-1-13			挥发酚							9. Z	1	ര	(,1000
DZS1	DEM20250307001-DS1-1-12			六价铬								/	13	P5= 0
DZS1.	DEM20250307001-DS1-1-11			碘化物								1	ัก	9500
DZS1	DEM20250307001-DS1-1-10			肉眼可见物、臭和 味								,	1	P5.00
DZS1	DEM20250307001-DS1-1-09			总硬度								/	/	P500
DZS1	DEM20250307001-DS1-1-08			色度								/	-	P500
DZS1	DEM20250307001-DS1-1-07		_	溶解性总固体								/	1	9500
DZS1	DEM20250307001-DS1-1-01	_	30	最老		-						,	a	7)00
DZS1	DEM20250307001-DS1-1-02			氰化物								/	ล	000
DZS1	DEM20250307001-DS1-1-03			石油烃 (C10- C40)								1	Ö	6/200
DZS1	DEM20250307001-DS1-1-04			硫化物									8	6250
DZS1	DEM20250307001-DS1-1-05			氨氮、耗氧量								1	0	4500

AS1	DEM20250307001-DS2-1-10	12:59	做菱.馅锌 碘蜂_	肉眼可见物、臭和 味	6.0	<i>ן,</i> ಒ	_	/	/	/	/	_	/	Pyon
AS1	DEM20250307001-DS2-1-01		13	気薬だ								-	9	11000
AS1	DEM20250307001-DS2-1-02		-	氰化物								_	3	mo
AS1	DEM20250307001-DS2-1-03			石油烃 (C10- C40)								-	0	9/000
AS1	DEM20250307001-DS2-1-04			硫化物									(2)	6200
AS1	DEM20250307001-DS2-1-05			氨氮、耗氧量									n	450
AS1	DEM20250307001-DS2-1-06			亚硝酸盐氮、氟化 物、氯化物、硝酸 盐氮、硫酸盐								7	0	b.
AS1	DEM20250307001-DS2-1-07			溶解性总固体	,							-	/	P500
AS1	DEM20250307001-DS2-1-08			色度								-	1	Droo
AS1	DEM20250307001-DS2-1-09			总硬度									/	Py 99
AS1	DEM20250307001-DS2-1-11			碘化物								-	ิด	p500
AS1	DEM20250307001-DS2-1-12			六价铬								Ĺ.,	3	1500
AS1	DEM20250307001-DS2-1-13			挥发酚						_			Ő	4/00
AS1	DEM20250307001-DS2-1-14			浊度	/	/	/			1/3	98/6	7 /	7	-
AS1	DEM20250307001-DS2-1-15			pН	-	_	1.1	_	1.	1	1	/ -		/
AS1	DEM20250307001-DS2-1-16			三氯甲烷、四氯化碳、甲苯、苯、苯								1	9	proo
AS1	DEM20250307001-DS2-1-17			汞、砷、硒								1	P	1792
AS1	DEM20250307001-DS2-1-18			阴离子表面活性剂								-	Ø.	7500
AS1	DEM20250307001-DS2-1-19			钠、铁、铅、铜、 铝、锌、锰、镉								,	Ø	1500
BS1	DEM20250307001-DS3-1-03	13=10	概義、概算 磁性	石油烃 (C10- C40)	6.0	1.3	,	1	7	/	/	1	0	<i>دها</i>)
BS1	DEM20250307001-DS3-1-07			溶解性总固体								-	-	P500
BS1	DEM20250307001-DS3-1-08			色度								-	-	Pro
BS1	DEM20250307001-DS3-1-09			总硬度								-	1	Prop
BS1	DEM20250307001-DS3-1-10			肉眼可见物、臭和 味								1	1	1000
BS1	DEM20250307001-DS3-1-11			碘化物								-	0	Pro
BS1	DEM20250307001-DS3-1-12			六价铬								1	a	6200
BS1	DEM20250307001-DS3-1-13			挥发酚									6	6/003
BS1	DEM20250307001-DS3-1-14			浊度	1	-	_	_	_	1	29 9 31	2 16 1	1	1
BS1	DEM20250307001-DS3-1-15			pH .	_		7-3	-		/	0	-61/	1	7

BS1	DEM20250307001-DS3-1-16			三氯甲烷、四氯化碳、甲苯、苯、苯								/	ø	6800	
BS1	DEM20250307001-DS3-1-17			汞、砷、硒								-	9	1500	
BS1	DEM20250307001-DS3-1-18			阴离子表面活性剂								_	กั	P500	
BS1	DEM20250307001-DS3-1-19			钠、铁、铅、铜、 铝、锌、锰、镉								/	Ø	Pro	
BS1	DEM20250307001-DS3-1-04			硫化物								-	(8)	4250	
BS1	DEM20250307001-DS3-1-05			氨氮、耗氧量								-	กั	4500	
BS1	DEM20250307001-DS3-1-01		常	屎 莠								-	\$	100°	
BS1	DEM20250307001-DS3-1-06			亚硝酸盐氮、氟化 物、氯化物、硝酸 盐氨、硫酸盐								1	<u>ව</u>	P5°°	
BS1	DEM20250307001-DS3-1-02			氰化物									ด	P500	
CS1	DEM20250307001-DS4-1-02	13:44	竹花盖, 你这是是	氰化物	6.0	1.5	/	/	/	_			9	by	
CS1	DEM20250307001-DS4-1-01	11	1.	氣極 保龙								/		4/**	L
CS1	DEM20250307001-DS4-1-03			石油烃 (C10- C40)								1	0	4/000	
CS1	DEM20250307001-DS4-1-04			硫化物									(9)	4250	
CS1	DEM20250307001-DS4-1-05			氨氮、耗氧量								1		1.500	
CS1	DEM20250307001-DS4-1-06			亚硝酸盐氮、氟化 物、氟化物、硝酸 盐氮、硫酸盐								1	0	proo	
CS1	DEM20250307001-DS4-1-07			溶解性总固体								_	1	Pro	
CS1	DEM20250307001-DS4-1-08			色度					*				-	8500	
CS1	DEM20250307001-DS4-1-09			总硬度								_		P500	
CS1	DEM20250307001-DS4-1-10			肉眼可见物、臭和 味								-	,	Proo	
CS1	DEM20250307001-DS4-1-11			碘化物								1	17	9700	
CS1	DEM20250307001-DS4-1-12			六价铬									0	Pro	
CS1	DEM20250307001-DS4-1-13			挥发酚	İ						1		(i)	4/000	
CS1	DEM20250307001-DS4-1-14			浊度	_		/	/		1	29-88	1	/8	"/	
CS1	DEM20250307001-DS4-1-15			рН		1	7.5	1			1 /		,	1	18.40
CS1	DEM20250307001-DS4-1-16			三氯甲烷、四氯化碳、甲苯、苯、苯								(Ð	P3-00	
CS1	DEM20250307001-DS4-1-17			汞、砷、硒								1	(P)	Prop	
CS1	DEM20250307001-DS4-1-18			阴离子表面活性剂								_	0	Dros	

ES1	DEM20250307001-DS6-1-15		ı	lpH	ı -	-	19.41			1	1	1 -	1 /	1 /	118-5
ES1	DEM20250307001-DS6-1-15			三氯甲烷、四氯化		<u> </u>	1-1	-	-	<u> </u>	-	_	<u> </u>	<u> </u>	10-7
E31	DEM20230307001-DS6-1-16			碳、甲苯、苯、黄								_	v	Proo	
ES1	DEM20250307001-DS6-1-17			汞、砷、硒								-	9	1500	1
ES1	DEM20250307001-DS6-1-18			阴离子表面活性剂								-	Ð	1500	1
ES1	DEM20250307001-DS6-1-19			钠、铁、铅、铜、 铝、锌、锰、镉								,	G	P500	1
ES1	DEM20250307001-DS6-1-01		3	中華等心								_	n	4000	1
ES1	DEM20250307001-DS6-1-02		-	氰化物									3	Proo	1
ES1	DEM20250307001-DS6-1-03			石油烃 (C10- C40)								1	3	4/000	1
ES1	DEM20250307001-DS6-1-04			硫化物								1	1	4250	1
ES1	DEM20250307001-DS6-1-06			亚硝酸盐氮、氟化 物、氯化物、硝酸 盐氮、硫酸盐								1	0	Pro	
DZS1	DEM20250307001-DS-X-1-03	14:07	-	硫化物	6. D	1.0	_	/	/	_	_	-	3	4250	1
DZS1	DEM20250307001-DS-X-1-05			亚硝酸盐氮、氟化 物、氯化物、硝酸 盐氮、硫酸盐								1	ð	Proo	
DZS1	DEM20250307001-DS-X-1-06			总硬度								/	-	2500	1
DZS1	DEM20250307001-DS-X-1-07			碘化物								_	o	P50 °	1
DZS1	DEM20250307001-DS-X-1-08			六价铬								, ,	3	Pyos	
DZS1	DEM20250307001-DS-X-1-09			挥发酚								1	Ď	400	
DZS1	DEM20250307001-DS-X-1-10			浊度	-	/	/	/		13	17/1	2 /	1	-	
DZS1	DEM20250307001-DS-X-1-11			pН	-	1	7-4	-	/	/	-		/	-	18.10
DZS1	DEM20250307001-DS-X-1-12			三氯甲烷、四氯化碳、甲苯、苯、								1	9	Proo	
DZS1	DEM20250307001-DS-X-1-13			汞、砷、硒								1.	9	Pros	
DZS1	DEM20250307001-DS-X-1-14			阴离子表面活性剂									0	Pros	1
DZS1	DEM20250307001-DS-X-1-15			钠、铁、铅、铜、 铝、锌、锰、镉							i.	1	8	\$500	200
质控样	Bd-5026-089			浊度	-	-	-	1	1	/	2019	1	,	/	54
质控样	BY-2024-096			рН	~	-	4.01	-	_	/		1	1	/	初月
DZS1	DEM20250307001-DS-0全-1-16			石油烃 (C10- C40)								1	0	(po>	২ন্ট
DZS1	DEM20250307001-DS-0全-1-15			钠、铁、铅、铜、 铝、锌、锰、镉								1	Ø	Proo	

DZS1	DEM20250307001-DS-0全-1-14		阴离子表面活性剂		I	I	1	I	-	ıΦ	1 1000
DZS1	DEM20250307001-DS-0全-1-13		汞、砷、硒						-	(9)	6200
DZS1	DEM20250307001-DS-0全-1-12		三氯甲烷、四氯化 碳、甲苯、苯						,	0	Pro
DZS1	DEM20250307001-DS-0全-1-09		挥发酚						,	6	4600
DZS1	DEM20250307001-DS-0全-1-08		六价铬						/	9	PT08
DZS1	DEM20250307001-DS-0全-1-07		碘化物						/		Proo
DZS1	DEM20250307001-DS-0全-1-06		总硬度						/	1	PT 08
DZS1	DEM20250307001-DS-0全-1-05		亚硝酸盐氮、氟化 物、氯化物、硝酸 盐氮、硫酸盐							0	Pyoo
DZS1	DEM20250307001-DS-0全-1-04		氨氮、耗氧量							0	450
DZS1	DEM20250307001-DS-0全-1-03		硫化物						-	(3)	420
DZS1	DEM20250307001-DS-0全-1-02		氰化物						,	(3)	1950
DZS1	DEM20250307001-DS-0全-1-01		氮苯						1	ิด	4/000
DZS1	DEM20250307001 DS X 1 01	共	金巻						/	9	(/001
DZS1	DEM20250307001-DS-X-1-02		氰化物						1	8	P(>B
DZS1	DEM20250307001-DS-X-1-04		氨氮、耗氧量						1	ű	4 100

監測依据: □水温 水质 水温的测定 温度计域能倒温度计测定法58/T13195-1991: 区由水质 州值的测定 电误法 II 1147-2020: □水质 溶解氧的测定 电化学探头法D0 II 506-2009: □免疫水质 测度的测定 浊度计式能引 1075-2019: □电导率 (水和废水监测分析方法) (第四版均补版) 国家环保总局(2002) 3.1.9.1便纳式电号率位法:□のP(水和废水监测分析方法) (第四版均补版) 国家环保总局(2002) 3.1.10帕电板法:

采样人: 刘代龙、艾沁L

审核者: ○○○○○

陪同人员: **美**俊

共 | 页 / 第 | 页

镇江新区环境监测站有限公司

控制编号: XQJC-62045-21

地下水采样井洗井记录单

			-									
地块名称: 抖	5年化学				ì	先井日期	: 102	٥٠-٥ م				
委托编号: PEr	12250107001				3	采样井编	号: P	25				
天气状况: 14		48 小	时内是否	强降雨:	F		采样井	锁扣是否完整	: <u>J</u>			
采样点地面是	否积水或发现非	水相液	(体:を				洗井设	:备(贝勒管☑	泵口 其它口)			
洗井前水位面	至井口高度(m): 0.	8	•	;	井水深度	(m):	5-5				
洗井开始时间	: 9:55				ì	先井结束	时间:	10-10				
pH 计型号 及编号 ⁵ 771	及编号 が2731	1	氧化还 仪型号》 作 ⁷	及编号	2	度计型号 及编号		虫度仪型号 及编号 Tu/o°	溶解仪型号 及编号 5x716			
	大約に											
pH 仪校正: 缓冲溶液理论值 □4.00 定位值: ½。。 □6.86 定位值: 6.86 □09.18 定位值: 7 /8 电导率仪校正: 1 标准液 (氯化钾溶液) 电导率 (uS/cm): 1413 2.校正标准液的电导率 (uS/cm): /約 □												
	: 1.满点校正读											
	校正: 1.标准液	_						() ()	<i>†</i> }2			
				洗井过	程记录							
时间(min)	温度℃		рН	电导率	uS/cm	溶解氧	(mg/L	氧化还原电 位 mV	浊度 NTU			
9=85	18-3	7	1-4	589		7-40	ζ.	110	刘保龙8 9.2			
(2:00	18.3		1-4	58 8		7.4	5	109	刘保起 9-1			
o: >y	18-}		7-4	586		7-4	4	. 108	7-15 9.1			
	,								MANE			
		L.,										
稳定标准 ±0.5℃ ±0.1				±1	0%		3mg/L :10%	±10mV 或±10%	≤10NTU 或±10%			
洗井水总体积	(L): }••°			洗井	‡结束8	寸水位面	至井口	高度(m): /⋅	•			

备注: 1、采样井建成至少 24 小时后才能洗井;

- 2、洗井每间隔 5min 一次, 当 pH、浊度、电导率连续 3 次测定变化在稳定标准值以内可结束洗井, 采样;
 - 3、如洗井 4h 后出水水质 pH、浊度、电导率测定变化仍达不到稳定标准值,可采用贝勒管进行采样。
 - 4、现场洗井拍照。

洗井人: 别好 专业 审核人: 人民人

陪同人员: 义仪

镇江新区环境监测站有限公司

控制编号: XQJC-62045-21

地下水采样井洗井记录单

地块名称: 托	RKY					洗井日期	: 10 Y.	05. 09				
委托编号: NEA	10 40%70°)					采样井编	号: 4	31				
天气状况: 0.5		48 小	时内是否	强降雨:	Ţ.		采样井	:锁扣是否完整	£: 9			
采样点地面是?	5积水或发现非	水相溶	(体: そ						 泵口 其它口)			
洗井前水位面	至井口高度(m): 0-9		•		井水深度	(m):	<i>ځ. ۴</i>				
洗井开始时间:	10:47					洗井结束	时间:	1/02				
pH 计型号	电导率仪	型号	氧化还	原电位	温	度计型号	Ý	由度仪型号	溶解仪型号			
及编号	及编号		仪型号			及编号	"	及编号	及编号			
54731	54 77)		4731					TN/20	Sx716			
	Xe71-12/35 Xe71-12/35 Xe11-					ag(-[1[2]		Xen- 12/25	X021-1266			
pH 仪校正: 缓冲溶液理论值 ☑4.00 定位值: ٢°° ☑6.86 定位值: 6~86 ☑9.18 定位值: 9.19												
电导率仪校正:	1标准液(氯	化钾溶	液)电导	率(uS/d	m): :	1413 2.1	交正标准	主液的电导率	(uS/cm): 14/2			
溶解氧仪校正:	1.满点校正读	数(m	g/L): /	2.校	正时温	温度 (℃)	: 4	3.校正值(n	ng/L): /pɔ			
氧化还原电位构	交正: 1.标准液	ORP 理	₽论值(m	V):430	±10	2.校正	示准液 (ORP (mV): 4)	2			
				洗井过	程记录	:						
时间(min)	温度℃		рН	电导率	uS/cm	溶解氧	(, mg/L	氧化还原电 位 mV	浊度 NTU			
لياد م]	8.1		7.1	561		3.)	68	9.7 9.46			
10:52	18.1		7.1	56	5	3.	30	107	9.7 对保护			
لاء وا	18-1		7-1	56	4	3.	29	lob	9.7×19864			
						1.0.1)/ī		-1 ONITE			
稳定标准	±1	.0%		3mg/L :10%	±10mV 或±10%	≤10NTU 或±10%						
洗井水总体积	(L): 30.0			洗	井结束	时水位面	至井口	高度 (m): 人	L .			

备注: 1、采样井建成至少 24 小时后才能洗井;

- 2、洗井每间隔 5min 一次, 当 pH、浊度、电导率连续 3 次测定变化在稳定标准值以内可结束洗井,
 - 3、如洗井 4h 后出水水质 pH、浊度、电导率测定变化仍达不到稳定标准值,可采用贝勒管进行采样。
 - 4、现场洗井拍照。

洗井人: からまして 申核人: ✓✓▽

陪同人员:

<u> 控制编号: XQJC-62045-21</u>

地下水采样井洗井记录单

地块名称: 光	1kg				;	选井日期	: by.	۶۰°۱	
委托编号: 死产	1640 Jojool				;	采样井编	号: 1/5		
天气状况: 84		48 小	时内是否	强降雨:	₹		采样井	锁扣是否完整	: 3
采样点地面是否	5积水或发现非	水相溶	[体: 4				洗井设	备(贝勒管区	(泵口 其它口)
洗井前水位面至	至井口高度(m): /.°		•	:	井水深度	(m):	5-2	
洗井开始时间:	11:94				;	洗井结束	时间:	11:19	
	电导率仪	型号	氧化还	原电位		度 计型号	泊	由度仪型号	溶解仪型号
及编号	及编号	}	仪型号	及编号	1	及编号		及编号	及编号
5×7)/	[17x]		ונך אי					TN/00	41916
xon- 121	35 Xen-1:	Kazı-	12/35	Te	71- (2/2)	λ ,	12/25	Xest- 1266	
パッパ〜 12 pH 仪校正: 缓	冲溶液理论值	Ø4.0	0 定位值:	<i>9.</i> € J		定位值:	6.96	☑9.18 定位(直:9.18
电导率仪校正:									
溶解氧仪校正:	1.满点校正读	数(m	g/L): /ºº	2.校	正时温	度(℃)	: V	3.校正值(n	ng/L): /00
氧化还原电位构	交正:1.标准液	ORP 理	₿论值(m	V): 430	±10	2.校正	标准液 C	ORP (mV):	432
				洗井过	程记录				
时间(min)	温度℃		pН	电导率	uS/cm	溶解氧	(mg/L	氧化还原电 位 mV	浊度 NTU
9:04	18.2		1.3	597)	3.	. 55	125	9.9 刘保永
11:09	18-2		7,3	59	L	;	1.54	124	9.8 The
11:14	18-2		7.}	5"	11		3.53	12)	9.8 31958
	,								
		<u></u>							
									*
稳定标准 ±0.5℃ ±0.1				±1	10%		3mg/L =10%	±10mV 或±10%	≤10NTU 或±10%
洗井水总体积	(L): 20.0		洗	井结束田	付水位面	至井口	高度 (m): /·	}	

备注: 1、采样井建成至少 24 小时后才能洗井;

- 2、洗井每间隔 5min 一次,当 pH、浊度、电导率连续 3 次测定变化在稳定标准值以内可结束洗井,采样;
 - 3、如洗井 4h 后出水水质 pH、浊度、电导率测定变化仍达不到稳定标准值,可采用贝勒管进行采样。
 - 4、现场洗井拍照。

洗井人: 为得人

审核人:

陪同人员:

控制编号: XQJC-62045-21

地下水采样井洗井记录单

地块名称: 拜3	纸					洗井日期]: "	4.05-09	
委托编号: 657	م. وروز « ما ما					采样井编	号:	c s 1	
天气状况: 64		48 小	时内是否	强降雨:	F		采样	井锁扣是否完整	£. <u>1</u>
采样点地面是有	否积水或发现非	水相溶	(体:飞				洗井	设备(贝勒管区	(泵口 其它口)
洗井前水位面	至井口高度(m): 1-3				井水深度	(m)): 5.2	
洗井开始时间:	12:38					洗井结束	时间	: 12:53	
pH 计型号 及编号			氧化还, 仪型号,			度计型号 及编号		浊度仪型号 及编号	溶解仪型号 及编号
X80 [2]3	「パリ」					976- 12123		TN/2° X51-12)25	5×716 ×05 1266
								术准液的电导率	
溶解氧仪校正:	1.满点校正读	数(m	g/L): / <i>0</i> ~	2.校	正时温	温度 (℃)	: L5	3.校正值(n	ng/L):
氧化还原电位构	交正: 1.标准液	ORP 理	₿论值(m	V): 430	±10	2.校正	示准剂	ORP (mV):	472
				洗井过程	程记录	:			
时间(min)	温度℃		pН	电导率	uS/cm	溶解氧	(mg/	L	浊度 NTU
12:38	18-4		7.5	587	t	3.71	c	135	9.7 对张龙
12:43	18-4 18-4		7.5	58	3	7-7:	2	134	9.7
12:48	18-4		7.5	58	ι	}. 6	7	133	97 406
稳定标准	稳定标准 ±0.5℃ ±0.1		±0. 1	±1	0%		3mg/L :10%	±10mV 或±10%	≤10NTU 或±10%
洗井水总体积	(L): 30.0		洗井	持结束	时水位面	至井口	□高度(m): (、	5	

备注: 1、采样井建成至少 24 小时后才能洗井;

- 2、洗井每间隔 5min 一次, 当 pH、油度、电导率连续 3 次测定变化在稳定标准值以内可结束洗井, 采样;
 - 3、如洗井 4h 后出水水质 pH、浊度、电导率测定变化仍达不到稳定标准值,可采用贝勒管进行采样。
 - 4、现场洗井拍照。

洗井人: 为保护、长生

审核人:

dry

陪同人员:

羊。

镇江新区环境监测站有限公司

控制编号: XQJC-62045-21

地下水采样井洗井记录单

地块名称: 兆	፞፞ ፞ ፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞፞ 					洗井日期	1: 64.	05.09	
委托编号: 96	40150 p 700					采样井编	号: DS	1	
天气状况: 0套		48 小	时内是否	强降雨:	Į,		采样井	:锁扣是否完整	£: 9
采样点地面是	否积水或发现非	水相溶	(体: そ	•			洗井设	盎(贝勒管反	 「泵口 其它口)
洗井前水位面	至井口高度(m): [.]		•		井水深度	(m):	5-3	
洗井开始时间:	: (/12)					洗井结束	时间:	11-38	
pH 计型号	电导率仪	型号	氧化还	原电位	温	度计型号	'n	由度仪型号	溶解仪型号
及编号	及编号	글	仪型号2	及编号		及编号		及编号	及编号
18781	SK731		J×	7)				TNED	587/6
X031- (2/3	your-	χω _σ	1-12/35	70	\$(-(212)		x001-144	1 - 1	
pH 仪校正: 缓	冲溶液理论值	⊿ 4.0	0 定位值:	4.9	⊉ 6.86	定位值:	6.86	☑9.18 定位化	直: 9.18
									(uS/cm): //// L
	: 1.满点校正读								/
氧化还原电位	校正: 1.标准液	ORP 理	l论值(m	V): 430	±10	2.校正标	示准液 (ORP (mV):	14.432
				洗井过	程记录	ŧ			5119
时间(min)	温度℃		pН	电导率	uS/cm	溶解氧	(mg/L	氧化还原电 位 mV	浊度 NTU
11:23	18.4	1	٠	57	7	3. 6	2.	/33	2-8 m
11±1g	18-4	7	٠,٢	57	L	7-6	1	1}2	刘华刻 9.8
1/237	18-4	7.5	<u> </u>	57	15)-	60	1>1	刘伊城 9.8
		ļ.,							
,									
						101) /I	1.10.77	
稳定标准	稳定标准 ±0.5℃ ±0.1				10%		3mg/L :10%	±10mV 或±10%	≤10NTU 或±10%
洗井水总体积	(L): }0-0			洗き	井结束	时水位面	至井口	· · · · · · · · · · · · · · · · · · · ·	P f

备注: 1、采样井建成至少 24 小时后才能洗井;

- 2、洗井每间隔 5min 一次, 当 pH、浊度、电导率连续 3 次测定变化在稳定标准值以内可结束洗井, 采样;
 - 3、如洗井 4h 后出水水质 pH、浊度、电导率测定变化仍达不到稳定标准值,可采用贝勒管进行采样。
 - 4、现场洗井拍照。

洗井人: 知代, 一文代, 审核人: 从分入

陪同人员: